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Abstract
The goal of a reservation-based QoS system is to guarantee specific transmission para-
meters to data flows especially in a resource-constrained environment. To do so, it has
to balance different requests and find a resource allocation maximizing the overall value
to its users.

Traditionally there is an information gap in this optimization process: The network
layer operates on individual data flows, whereas higher layers bind multiple flows to-
gether to form more complex connections. Without being aware of these relationships
introduced on higher layers, the network layer may assign transmission resources to re-
servations, while not guaranteeing other, additionally required reservations. The result is
a sub-optimal allocation, which wastes resources that could ultimately be used to better
satisfy users in an already quite strained environment.

This work proposes to make the network layer aware of higher-layer relationships by
modeling them as propositional formulas over the resource allocation. Each reservation
is represented by a Boolean variable giving its current resource assignment state. By
deriving the resulting value of each propositional formula the optimization process can
detect – and ultimately eliminate – wasted resources.

The optimization problem is an instance of the Knapsack problem with additional
Boolean constraints. By transforming it into a Mixed Integer Linear Program existing
optimization algorithms like Branch-and-Cut can be used to find optimal solutions in a
reasonable time frame. The results of this work indicate that, depending on the scenario,
up to 75% of assigned resources may be wasted in a relation-unaware system. Alleviating
this problem yields a dramatic increase of the number of admitted application sessions.

Together with proactive resource management, where reservations can be suspended
and resumed by the network, this approach is especially suited for highly variable, long
delay networks. It is able to autonomously find the optimal resource distribution, without
putting additional signaling burden on already limited resources.
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Zusammenfassung
Aufgabe eines reservierungsbasierten QoS-Systems ist die Garantie spezifischer Über-
tragsungsparameter für Datenflüsse in Umgebungen mit begrenzten Ressourcen. Zu die-
sem Zweck muss das System verschiedene Anforderungen gegeneinander abwägen und
eine Ressourcenzuteilung maximalen Wertes für die Nutzer finden.

In existierenden Lösungen leidet die Ressourcenzuteilung unter eine Informationslücke:
die Netzwerkschicht betrachtet einzelne Datenströme ohne Kenntnis ihrer Beziehungen
in höheren Schichten. Durch diese Lücke kann es zur Zuteilung von Ressourcen an nicht
nutzbare Reservierungen kommen, die auf andere, nicht aktive Ströme angewiesen sind.
Dies resultiert in einer Verschwendung von Ressourcen, welche anderweitig besser zur
Erbringung von Diensten genutzt werden könnten.

Die vorliegende Arbeit schlägt ein QoS-System der Netzwerkschicht vor, welches Kennt-
nis über die existierenden Pfadbeziehungen besitzt. Diese werden als Ausdrücke der
Aussagenlogik formuliert, in denen die Zuständer der reservierten Pfade als Boolesche
Variablen repräsentiert werden. Durch Auswertung der entsprechenden Ausdrücke kann
der Optimierungsprozess verschwendete Ressourcen erkennen und vermeiden.

Das Optimierungsproblem ist eine Instanz des Rucksackproblems mit Nebenbedingun-
gen. Durch Umwandlung in ein Mixed Integer Linear Program können durch existierende
Algorithmen wie Branch-and-Cut optimale Ressourcenzuteilungen in vertretbarer Zeit
berechnet werden. Die vorliegenden Ergebnisse zeigen, dass die Optimierung ohne Kennt-
nis der Pfadbeziehungen in bestimmten Szenarien bis zu 75% der zugeteilten Ressourcen
verschwendet. Eine Lösung dieses Problems erlaubt eine wesentlich effizientere Nutzung
begrenzter Ressourcen und damit den Transport einer deutlich größen Zahl an Anwen-
dungssitzungen.

Zusammen mit einem netzseitigen Ressourcenmanagement, welches Reservierungen
pausieren und fortsetzen kann, ist dieser Ansatz besonders für stark veränderliche Netze
mit langen Übertragungsverzögerungen geeignet. Das Netz findet autonom eine optimale
Ressourcenzuteilung, ohne die begrenzten Ressourcen durch zusätzliche Signalisierung
zu belasten.
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1. Introduction

When large-scale disaster strikes, one of the most urgent issues after the initial local
emergency response is getting communication systems up and running. Coordinating
extensive rescue and relief operations is an exercise in logistics, as well as coordination.
Ground-based systems like the landlines or mobile networks usually suffer extensive
damage, often rendering them unusable. A prime example was hurricane Katrina [IH06]
in the southern USA in 2005: destroyed cellphone towers, broken landlines, and, later on,
stolen power generators caused a widespread communication break-down which severely
hampered the work of rescue forces.

In this situation, independent mobile communication systems, such as satellite net-
works, can provide services even in the most heavily destroyed regions. With their inde-
pendent infrastructure, they allow rescue organizations to enter the area, stay connected
to their headquarters and coordinate efforts based on a multitude of data otherwise not
available.

Communication in a disaster scenario employs a plethora of different systems and pro-
tocols: Real-time communication, such as voice or video calls, time-critical emergency
messages, and simple data traffic, e.g. maps or mission plans. Event high capacity
emergency networks are typically not able to cope with this demand placed on them.
Providing a sufficient service via a very limited infrastructure requires an efficient allo-
cation of available resources.

1.1. QoS systems for efficient resource allocation
The fundamental best-effort model of the Internet Protocol is not well suited for ef-
ficiently allocating transmission resources in certain scenarios. The protocol stack is
mainly designed for robust communication without central control. Mechanisms like
the congestion control of TCP aim to provide a fair allocation of resources to all users.
However, this fairness can be detrimental to efficiency. Applications which require a
certain minimum data rate or maximum latency are better off not communicating at all,
instead of wasting precious resources in their futile endeavor.

Enter Quality-of-Service (QoS) systems: even the very early incarnations of the Inter-
net Protocol were able to signal additional information about the preferred treatment
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of a packet via the Type-of-Service field in the IPv4 header. A simple priority model
combined with general information about the preferred packet treatment (e.g. high
throughput, low delay or high reliability) provided ways for the network to distinguish
different types of traffic and better allocate limited resources.

With the advent of real-time services for the Internet, the need arose for a more
rigid system being able to guarantee certain transmission parameters. The resulting
Integrated Services architecture provided a way to set up and tear down transmission
paths. Network nodes were to set aside the necessary resources, or reject reservations
where this was impossible. Similar to telephone networks with their dedicated lines,
IntServ provides upfront guarantees, not impacted by the behavior of other network
users. For more details on IntServ and its applicability to this work see section 2.2.1.

Where the IntServ architecture is able to provide an efficient allocation of limited
resources tailored to the needs of the end user, it suffers from a major drawback: its
lack of scalability. The Internet resembles a scale-free network: relatively few highly
connected core networks (the Tier 1) carry the majority of traffic, whereas towards
the network edge the load lessens considerably. For this reason, IP was designed with
the state being held at the end system. At its core, an IP network is nearly stateless:
apart from a relatively static set of routing information, the core network does not
contain any transient state for individual traffic flows or connections. IntServ violates
this assumption by introducing exactly this per-flow state on every router along the way.
This leads to a massive amount of state information being stored on the Tier 1 network,
quickly overloading the constituent systems.

Combating these scalability issues requires pushing the state back out to the network
edge. In Differentiated Services (DiffServ), core routers only provide a fixed set of
forwarding behaviors that can be used by edge routers to provide the requested service
quality. As it is missing a reservation process, DiffServ does not necessarily provide
upfront transmission guarantees. It can, however, be combined with systems that offer
such: a more complex reservation-based system towards the end user and a simpler,
more efficient behavior mapping at the network core. DiffServ is desribed more in detail
in section 2.2.2.

What both architectures provide is a way to express QoS requirements, thus allowing
the network to better allocate limited resources and possibly reject traffic that might
overload the system.

10
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1.2. Problem statement
Guaranteeing certain transmission properties to flows in the network layer introduces
an information gap between the network and higher layers: the QoS model only carries
information about individual streams based on the information contained in individual
packets. On the transport and, in particular, application layers, more complex protocols
prevail. A single TCP stream, for example, already consists of two individual network
layer streams carrying data and, crucially, acknowledgements. On the application layer,
even more elaborate setups may exist. Protocols like HTTP or FTP introduce depen-
dencies between different TCP connections. Applications such as adaptive video coding
might even change the transmission parameters during a session to better cope with
changes in the environment.

None of this information is available to the QoS system on the network layer. When
allocating resources to reservations, only the the individual flow is considered. In sit-
uations with constrained capacity this can lead to mis-allocation: resources may lie
dormant because of unmet dependencies on a higher layer. These dormant reservations
might even preempt perfectly usable ones, decreasing user satisfaction even further.

Filling this information gap not only allows the network to allocate resources more
precisely, but also enables new use cases for the QoS system. Instead of having an all-
or-nothing decision with regards to a reservation (and therefore a service) end-systems
can, for example, now offer multiple alternatives to the network. By requesting multiple
variants of the same service (e.g. multiple output profiles of a video codec), along
with information about the relationship between those requests (specifically a mutual
exclusion in this case), the end-system provides enough information for the network to
gracefully degrade in the case of constrained resources.

This work intends to develop a quality-of-service system that fills the aforementioned
information gap. By providing the expressive means to model high-level relationships
between paths, the system should improve overall performance in constrained environ-
ments and enable use cases like graceful degradation.

1.2.1. Target environment
The research presented here was carried out in the context of mobile satellite commu-
nication. However, the results hopefully apply to a broader range of communication
networks. The system environment is characterized by:

Long delay Communication in the Internet is mainly characterized by low delay paths.
Even data transfer halfway around the world and back generally takes place within
round-trip times below 300-400 ms.
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In contrast, networks spanning satellites in a geostationary orbit impose a time-of-
flight delay of approximately 240 ms in one directiona. Together with processing
delays, this amounts to a round-trip delay starting at 500 ms, possibly exceeding
several seconds.

High packet loss Mobile communication networks in general, and mobile satellite net-
works in particular, are prone to environmental influences which lead to increased
packet loss. Fading, shadowing and interference all increase the chances of destroy-
ing crucial information in flight. Appropriate modulation and coding schemes, as
well as interleaving are able to protect against certain types of interference. They
do, however, have an adverse influence on the available capacity, as well as pro-
cessing delay.

Low data rate Compared to wired networks, wireless links are generally of low capacity.
This is especially true for long-range networks, with low signal-to-noise ratios at
the receiver.

Variable link capacity Fading, shadowing and interference are not constant environmen-
tal factors for a mobile communication link, but rather change over time (at widely
varying timescales). This directly translates into a highly variable available capac-
ity on the link.

QoS-aware MAC layer For special use cases like satellite communication, some kind of
resource allocation scheme, fixed or variable, on the shared medium typically exists.
Integrating an end-to-end QoS system with this type of intelligent MAC can have
two implications: such a MAC layer might benefit from, even need, information
about the resource requirements known to the higher layers. On the other hand it
can provide information about the capacity on the lower layers to benefit the QoS
system.

This target environment provides some unique challenges for the system in order to
solve the use cases and requirements described in the following section.

1.2.2. Requirements
The work done in this dissertation is guided by one overarching proposition: relationships
between reserved paths in a QoS system are the key to improved network performance.

aGeostationary orbits are at a height of approximately 36,000 km. A signal sent in one direction travels
72,000 km (ground-to-ground via satellite) at the speed of light, resulting in the delay mentioned.
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Taking them into account enables the system to better allocate resources to applications
and satisfy more end-user requirements. By allowing the network a higher autonomy
while still retaining the same decision quality, the distributed state of reservations will
converge faster in the case of changes. This leads to less transition time, minimizing the
performance impact.

This section expands on the requirements behind this proposition by presenting some
common example use cases and deriving common system traits from them.

1.2.2.1. Use cases

The research presented here was carried out in the context of the KASYMOSA project (see
section 1.3 for details). Its focus on disaster recovery communication therefore inspires
the use cases of this work. Only actual QoS-protected communication is considered here.
While some level of best-effort traffic can be expected to be present in the network, it
has no bearing on the QoS architecture. It is transmitted using any remaining capacity
beyond the requirements of the reserved traffic and is the first to be cut when resources
degrade.

Data transfer via TCP With TCP [Pos81] being the main transport layer protocol
in the Internet, there is no way around it as a use case. From the user’s perspective,
the protocol offers stream-oriented data transfer with delivery and order guarantees over
unreliable networks. From the network’s point-of-view, TCP offers automatic adaptation
to capacity changes, as well as fair resource sharing without central control.

Delivery and order guarantees are achieved by segmenting TCP traffic into individual
packets and acknowledging segments at the receiver. If a segment is not acknowledged,
it is retransmitted by the sender. A TCP connection therefore always consists of two
flows: the data and the acknowledgement (ACK) flowb.

For reasons of efficiency over links with a high bandwidth-delay-product, the protocol
implements a go-back-N approach: The sender transmits a certain amount of data (as de-
termined by the transmission window) without receiving an acknowledgement. Segments
are acknowledged cumulatively, i.e. an acknowledgement of segment X is interpreted as
“all segments up to X have been received”. The acknowledgement stream is therefore al-
ways much smaller than the corresponding data stream, resulting in a highly asymmetric,
bidirectional flow.

bTCP is capable of transmitting data in both directions of a connection. However, a common use case
is the transfer of a resource from a server to a client. This creates an asymmetric flow with data
mainly going one direction and acknowledgements traveling the other.
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Determining the optimal size of the transmission window is an ongoing research ques-
tion. It is guided by two conflicting goals:

1. Maximize the throughput of the TCP connection.

2. Prevent overload of the network and the receiver, and share available resources in
a fair way.

Preventing the overload of the receiver is achieved by explicitly signaling the Re-
ceive Window in the TCP header and is not relevant from the network’s point of view.
Maximizing throughput without overloading the network can be achieved by correctly
estimating the bandwidth-delay-product (BDP) of the path (i.e. the maximum amount
of data “in flight” before the first acknowledgement can be received). Sending any more
data would lead to an overload situation and eventually packet loss, any less would waste
resources. The current estimate of the BDP is represented by the Congestion Window
at the sender of a TCP stream. There is a plethora of control algorithms determining
this parameter for all different kinds of use cases. Most of them work according to the
same basic principles: ramping up the transmission window quickly (e.g. exponentially)
to saturate the available capacity (slow start phase) and relying on transmission errors
to detect congestion in the network. Transmission errors are detected by missing ACK
packets. Whenever the algorithms detect a congestion, they adapt their transmission
thresholds in order to reach a stable BDP estimate.

TCP’s congestion control algorithms typically share two common problems:

• Lost packets are considered to be caused by network congestion. Packets that are
lost due to other causes (e.g. transmission errors in a wireless network) erroneously
may cause the congestion avoidance to kick in. While some extensions of the
original TCP proposal address this issue (namely TCP Fast Retransmit and TCP
Fast Recovery [APB09]), performance still rests heavily on the stability of the link.

• Estimating the current BDP takes several transmitted packets and received ac-
knowledgements, thus incurring a significant delay. This delay is especially relevant
in fast changing environments like mobile communication.

From the point-of-view of the QoS system, TCP has the following properties:

Two mutually dependent paths Due to the nature of TCP’s acknowledgement mecha-
nism, each connection consists of two streams in opposite directions. Both flows
can only be used in conjunction. If one of the paths cannot be guaranteed, the
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other is inherently unusable: either no data transfer takes place (then no acknowl-
edgements are needed or sent), or no acknowledgements can be transmitted (then
data transfer will stop when the transmission window is exhausted).

Slow reaction to changes Due to the nature of TCP’s congestion control algorithms,
a connection takes some time to ramp up to maximum transmission speed. For
maximum efficiency it therefore relies on a stable link capacity over time.

Flexible transmission speed Depending on the application running on top, TCP in and
of itself does not require a specific data rate. The protocol will readily adapt to
whatever the network has to offer, as long as it stays stable for an extended period
of time (typically several orders of magnitude longer, than the round-trip time of
the underlying link).

Susceptibility to packet loss TCP assumes the cause of lost packets to be network con-
gestion and will lower its transmission rate to adapt to the presumed problem.
This makes it very susceptible to packets being lost due to transmission errors
on a wireless medium. Packet loss has a particularly large impact in the start-up
phase of a connection where the packet rate is too low for techniques like TCP
Fast Recovery to work properly.

Susceptibility to jitter Without an explicit signaling regarding lost packets, TCP has to
rely (amongst others) on timeouts to detect missing ACKs. For efficiency reasons,
this timeout needs to be estimated based on the current round-trip-time (RTT)
of the connection. Too short of an estimate will trigger needless retransmissions.
An overly long estimate, on the other hand, will needlessly delay retransmissions.
TCP estimates the correct retransmission timeout based on a weighted average
of the RTT, as well as the jitter. A higher jitter will, over time, increase the
retransmission timeout to unusable levels, massively slowing down the congestion
control feedback loop.

Web-Browsing via HTTP Arguably the most used service in the Internet, the World
Wide Web and thereby HTTP [BFF96] in its various incarnations presents its very own
set of challenges for a QoS system. Using TCP as the underlying transport protocol
it inherits all the requirements and assumptions presented in section 1.2.2.1. and adds
yet another layer of complexity. The deprecated version 1.0 is a simple request-response
protocol which opens one short-lived TCP connection per downloaded resource (of which
there might be many in a single web page containing style sheets, images, script files
etc.). This implies overhead for setting up and tearing down the respective connections
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(and, depending on the QoS system, reservations as well). HTTP/1.1 [Fie+99] already
improved on this situation by reusing connections to transfer multiple resources via its
Keep-Alive and pipelining mechanisms. Still, modern web browsers open a whole host of
connections for each web page loaded in order to parallelize requests and prevent being
stuck on slow or stalled resources. With current web applications being distributed via
content delivery networks and composed of all kinds of services from different vendors
(data providers, script libraries, advertisement networks etc.), these parallel connections
may span a large number of target hosts.

The newly standardized HTTP/2 [BPT15] further expands the capabilities of the
protocol to include multiplexing support within one TCP connection. While this could,
in theory, make it unnecessary in the future to open multiple connections to a single
host to benefit from parallel transfer, it is not widely used yet and cannot be relied upon.
However, as websites and applications will continue to draw on resources from multiple
servers, web browsers will still open many parallel connections to speed up the transfer.

From the QoS system’s point of view HTTP has the following properties:

Short-lived connections Many connections in a typical HTTP session are short lived.
They are set up, transfer a resource and are torn down. Even with extensions like
Keep-Alive, connection lifetimes are in the order of seconds with longer periods of
no data transfers taking place.

Variable number of connections Modern browsers open multiple connections to paral-
lelize data transfer even from one communication partner. However, this is only
a performance improvement measure. HTTP will work just as well over a single
connection or – in the case of multiple data sources for one web application – a set
of connections opened sequentially.

1-to-n connection setup When pulling in services from all kinds of vendors, clients need
to connect to a large set of different target hosts. This implies diverging transport
paths which might at some points only accidentally share the same transmission
resources.

Video streaming Real-time applications like video streaming are one of the main use
cases for QoS systems. They require high volume, fixed rate transfers without inter-
ruptions. As most Internet providers do not offer QoS capabilities to their customers,
platforms like YouTube, Netflix and Amazon Instant Video implemented measures to
cope with varying network speeds. Their respective players buffer video content (in-
creasing the latency) or switch to different video quality profiles (and thereby change
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the bandwidth requirements). This switching can occur automatically within an active
stream.

The actual bit rate used by a modern video codec depends on many different factors:
resolution, complexity of the image content, movement/change rate, quality settings,
and encoder profile (constant or variable bit rate settings). Although this makes it hard,
if not impossible, to predict the rate used at any given time, codecs are normally able
to estimate maximum rates.c

Video streaming as a prime example of a QoS application has the following properties:

Constant, high data rate Video streaming, even at relatively low resolutions, uses a
high amount of bandwidth at a relatively predictable, constant rate.

Bandwidth flexibility Video codecs are able to trade quality for bandwidth by changing
resolution, frame rate, and image or sound quality. These adaptations are typically
not gradual, but in distinct steps (e.g. by switching from high definition to standard
definition video).

Moderately resilient to jitter In order to provide a smooth display of a video stream,
the transmission has to meet certain timing requirements. However, as a streaming
service is not interactive, buffering techniques relax the real-time requirements to
within the size of the buffer.

Increased resilience to packet loss A video stream is resilient to packet loss to a certain
extent. Modern video codecs employ concealment techniques to hide decoding
errors from the user. Depending on the application, even if errors become visible,
they can be tolerated by the user.

Multicast capability If there is a clear sender-viewer-relationship without any feedback
in a video streaming application, transmissions can be multicasted to multiple
receivers. From the QoS system’s point-of-view, this extends the classic 1:1 relation
of a reservation to include 1:n relations. Sender-based adaptation schemes, as
mentioned above, that may rely on receiver feedback about the network state are
no longer possible. Either adaptation takes place in the network using intelligent
network nodes, or the sender offers multiple versions of the same stream to different
subscribers (e.g. on different multicast addresses).

cFor fixed rate codecs this problem is eliminated in total. The codec uses a predefined rate and lowers
the image quality where necessary.
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Video Conferencing A more demanding QoS use case is a video conference. It inherits
all the properties and issues of the Video Streaming scenario and adds strong real-time
requirements on top. Video conferencing is an interactive service: two or more people
talk to each other in real-time. This requires a very low round-trip delay of less than
approximately 400 ms. Beyond that delay, the typical user will have issues keeping a
conversation going as people tend to cut each other off and start speaking at the same
time. UTMS and LTE acknowledge this fact by limiting the end-to-end delay of their
voice traffic classes to 400 ms.

QoS-wise, the Video Conferencing use case has the following properties:

Complex connection hierarchy Depending on the protocol used, a video conference may
comprise several interdependent streams: two uni-directional video streams, the
appropriate audio streams and, depending on the protocol in question, some kind
of control connection. In this setup, not all streams are equally important. If, for
example, the control connection breaks, the application might assume a break of
the call. Therefore, this connection is a dependency for all other streams. Likewise,
users might prefer clear audio over a video signal, as most human communication
can be done orally, while a video-only connection is of lower value. This can be
viewed as a dependency of the video on its respective audio stream.

High susceptibility to jitter While the Video Streaming scenario can combat jitter by
simply buffering for some time in order to smooth out any interruptions in the
transmission, video conferencing does not have that option. Each buffer introduces
a delay. With video conferencing being a mainly delay-dominated application,
additional buffering is necessarily very limited.

High resilience to packet loss Video streaming – depending on the service, e.g. in a
digital TV setting – might need to deliver a rather high image quality. This limits
the amount of packet loss a user is willing to accept. Video conferencing, on the
other hand, allows for a bit more room for error. User will appreciate a clear audio
signal and a high-resolution, error free video stream, but communication is still
possible even when the visual signal severely deteriorates. A QoS system could use
this as room for optimization in a complex environment with several competing
services and limited resources.

1.2.2.2. System requirements

With respect to the environment constraints and the use cases, the system needs to
support the following set of requirements:
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Efficient resource allocation In systems where transmission capacity is at a premium,
it needs to be used as efficiently as possible. Efficiency can mean different things
on different layers of a transmission system. The physical layer might prefer mod-
ulation and coding schemes using as little physical resources as possible for each
transmitted symbol. MAC and network layers, on the other hand, might try to
minimize protocol overhead (e.g. by employing techniques like header compres-
sion).
From the point-of-view of the QoS system, efficiency is in the use of resources to
provide a desired transmission behavior (e.g. by assigning transmission resources
to specific reservations). Especially when the desired exceeds the available capacity,
an efficient QoS system needs to ensure that the overall user satisfaction is maxi-
mized. This can imply suspending or removing less important transmissions and
requiring end systems to adapt. It specifically implies ensuring, that each assigned
transmission resource can be fully used by the intended traffic. No reservation
should be assigned resources when any of its relations are not satisfied.

Minimum number of interactions This requirement actually stems from two different
network characteristics: first, the reservation process should not have a noticeable
impact on the already limited amount of resources. Second, the high transmission
delay present in satellite networks presents a challenge to message exchanges in-
volving too many steps. While the setup time of a longer running path might be
negligible, reaction times to network events are not. The desired system therefore
should minimize the amount of interactions necessary in any part of the protocol.

Adaptation to changing environment In a mobile environment in general, and in mo-
bile satellite communication in particular, we cannot consider the link as a static
resource. Variations in the conditions of the physical channel due to changing
weather, shadowing effects, or interference, need to be addressed by the QoS sys-
tem to operate successfully.

Flexibility/Expressiveness General-purpose communication systems call for a general-
purpose QoS solution. The QoS layer must not limit the types of relationships
expressible to a preconceived set of use cases.

Compatibility The Internet is too large and diverse to expect a complete adoption of a
QoS system within a short time frame (if at all). Therefore, the desired system
should be able to connect to legacy networks while still providing QoS services on
capable parts of the path. This should include cases where one of the end nodes
does not implement the QoS system.
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Robustness Any transmission necessary to setup and manage communication paths
should be robust in the face of message loss or duplication.

1.3. KASYMOSA
The research for this dissertation has been conducted in the context of the KASYMOSA
satellite communication system [Wol+13; Brü+16]. The requirements of this project
therefore influenced the assumptions and design decisions of this thesis.

KASYMOSA is a mobile satellite communication system for disaster scenarios. The
goal of the project was to develop a full disaster communication stack from the appli-
cation layer down to the antenna. The following environment assumptions were key to
the system design:

Highly mobile terminals The KASYMOSA terminals are highly mobile (e.g. placed on
cars). This influences the whole communication stack from the need for a tracking
antenna to the variable availability of communication resources for the application.
As a result of the mobility, the QoS system has to cope with highly variable link
capacities due to rapidly changing environment conditions.

Communication infrastructure for rescue and relief operations With the main focus
being on disaster scenarios, the system needs to be able to support the demands
of rescue and relief operations. Those typically include prioritized communication
flows, varying demand, and the need for an infrastructure independent of local
ground-based systems, as those are most likely damaged by the disaster. As a
main result of this requirement, KASYMOSA is a hub-less communication system
without central control over resource allocation.

Geostationary orbit The KASYMOSA system is targeted at satellites in a geostationary
orbit. Due to the nature of this orbit, with a height of approximately 36,000 km
above the surface of the earth, the system incurs a transmission delay of 240 ms
in one direction (time of flight for 72,000 km to the satellite and back down, at
the speed of light). Together with processing delays in the stack, this can lead to
a round-trip delay in excess of 1000 ms.

In order to offer service guarantees, e.g. for phone calls, emergency messages etc. the
system includes a Quality-of-Service component based on the work presented in this
thesis. Within the KASYMOSA system, the component interacts with the following
parts:
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Application The QoS system offers service guarantees to applications. These guaran-
tees are based on demands posed by the application and are fulfilled by correctly
configuring the service providers inside the system. Service guarantees in KASY-
MOSA are guarantees offered by the network service. They are expressed as the
standard parameters data rate, transmission delay, packet error rate, and jitter.
KASYMOSA expects the application to be able to provide its requirements based
on those parameters, and aims to guarantee them for as long as the necessary
resources are needed and available.

MAC layer Being situated in the network layer, the QoS system interacts with the
KASYMOSA MAC layer to fulfill application requirements. The MAC layer is able
to distribute communication resources based on the requirements given by the QoS
system. To achieve this, the QoS system aggregates the flow-level requirements
into DiffServ-like class requirements. The MAC layer in turn reserves the necessary
resources and offers an interface to transmit traffic according to the requested
transmission parameters.

The goal of the QoS subsystem is the provision of end-to-end service guarantees in
a changing environment. Due to the variability present in the communication environ-
ment, the QoS implementations on layers 1 to 3 are tightly integrated with each other.
The physical layer provides different modulation and coding schemes for different service
requirements. The MAC layer implements distributed resource allocation without the
need for a central hub. Layer 3 QoS ties everything together. By integrating applica-
tion requirements signaled by the end-systems into the QoS stack, the network layer
provides the input necessary to control the actual delivery of specific service levels over
the satellite.

Use-case specific applications providing situational awareness to rescuers complete the
KASYMOSA-picture. Fully developed, the system should provide a solution to take to
a disaster area, be switched on, and have it automatically provide the necessary service
to ensure a successful relief operation.

1.4. Remainder of this work
The remainder of this work is organized as follows: chapter 2 discusses existing QoS solu-
tions that influenced the design in one way or another. This encompasses abstract QoS
models like IntServ (section 2.2.1), as well as concrete protocol designs like NSIS (sec-
tion 2.3.2). The KASYMOSA QoS design is discussed in detail in chapters 3 and 4. The
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design consists of the QoS model as a framework for expressing requirements and rela-
tions, as well as a signaling protocol to transport the relevant information through the
network. Chapter 5 presents the evaluation of the system performance against existing
solutions. Finally, chapter 6 concludes the work and presents potential directions for
future research.
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The following chapter presents the state-of-the-art of Quality-of-Service. As a research
area, as well as a practical service, QoS is older than IP, even older than computer
networks in general. Wherever resources do not meet demands, similar QoS techniques
are employed: whether it is as simple as table reservations in a restaurant or as complex
as the capacity planning in water or electricity distribution networks.

In the narrower sense of QoS in IP networks, the research area starts right at the initial
specification of the Internet Protocol with a classification model based on the Type-of-
Service header field. From there, it has been evolving ever more complex models such
as IntServ or DiffServ.

2.1. Classification
For clarity purposes, this work distinguishes between QoS models and QoS protocols. QoS
modeling is concerned with the description of assumptions, guarantees and limitations
of an approach. Models are not implementations for specific systems, although they
may implicitly or explicitly make assumptions that focus on specific environments. QoS
protocols, on the other hand, implement QoS models. They define the communication
between different entities in the system, as well as necessary messages and parameter
encodings.

Systems cannot always be clearly classified into one or the other of the two categories.
QoS signaling is not necessarily orthogonal to the underlying model. Approaches such
as RSVP show a clear relation to the underlying IntServ model. By classifying an
approach as one or the other, this thesis merely puts an emphasis more on the model or
the protocol side of things.

2.2. QoS models
There are two main contenders in the domain of QoS modeling in IP networks: Inte-
grated Services (IntServ) [BCS94], a reservation-based, micro-flow oriented model with
support for guaranteed services, and Differentiated Services (DiffServ) [Nic+98; Bla+98],
a traffic-class-oriented model with the ability to scale to large networks. The systems
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are not necessarily exclusive, but can be used in conjunction to provide end-to-end QoS
for users. IntServ, with its clear focus reservations, is used towards the network edge
to obtain information about the current user requirements. DiffServ, with its ability to
scale, controls the resources in the core network.

2.2.1. Integrated Services
Integrated Services is first and foremost a way of thinking about service guarantees
in IP networks. The specification [BCS94] is just as much a standard for designing
QoS systems, as it is a collection of ideas. It does include the Resource Reservation
Protocol (RSVP) (see section 2.3.1) as a reference implementation of parts of the design,
but that is not its main focus. The principles and models presented in IntServ have
been implemented to varying degrees in other QoS protocols like Next Steps in Signaling
(NSIS) (see section 2.3.2). RSVP, on the other hand, has been extended to support
signaling of more class-like reservations [FAV08], which are not part of the original
IntServ specification.

IntServ introduces the notion of a resource reservation: an explicit request for specific
transmission parameter guarantees, which is either granted or rejected by the admission
control. It fundamentally shifts the service model of the Internet from a simple, stateless,
packet-switched network towards a stateful, circuit-switched approach. While the actual
data transport takes place under a packet-switched regime, the necessary resources are
set up, managed and torn down like in a circuit-switched network. The system installs
state in each network node along the path to enforce the agreed-upon transmission
parameters. This is the main issue of the Integrated Services approach: its lack of
scalability to large networks due to an explosion of the amount of state in the network
core. These issues led to the development of DiffServ (see section 2.2.2).

The IntServ architecture offers four different QoS models: Best Effort, Guaranteed
Service, Predictive Service, and Controlled Load[Wro97].

Best Effort is the standard mode of operation of the Internet Protocol. Packets are
forwarded whenever a network node is able to do so. Congestion in a node leads
to packets being dropped. Higher layer protocols are expected to implement mech-
anisms to cope with varying throughput, delay and packet loss rates.
IntServ goes slightly beyond existing Best Effort mechanisms by proposing dif-
ferent traffic classes as indicators for the relative delay sensitivity of transmitted
traffic. Network nodes could use this information, for example, to reorder their
transmission queues or adaptively discard messages in overload situations. The
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authors give no indication as to how an actual implementation of such a service
might look or behave.

Guaranteed Service offers the strictest QoS regime. Applications running under this
model receive at least the guaranteed service quality (e.g. minimum throughput
and maximum delay). If the system cannot guarantee the resources necessary, it
rejects the path request.

Predictive Service eases the service requirements to be “fairly reliable” ([BCS94], sec-
tion 3.1.1). Mainly concerned with a delay bound, applications under the Predic-
tive Service model can expect their delay bounds to be met most of the time, with
the occasional infraction occurring. They are expected to calculate their requested
delay bounds based on “properly conservative predictions about the behavior of
other flows”. The standard does not further specify these statements, deferring to
the actual application model for details.
Predictive Service is supposed to be less demanding in terms of network resources.
Depending on the actual application model, the network can overbook links to a
certain degree, allowing more simultaneous requests to succeed.

Controlled Load provides a further “soft” reservation model for IntServ. Not present
in the original specification, it was added as a mechanism to provide the service
quality of an unloaded network. The authors of [Wro97] specify this as:

• a very high percentage of successfully transmitted packets, with error rate
closely resembling the basic error rates of the unloaded medium, and

• an end-to-end delay not much higher than the respective delay of an unloaded
network.

The system uses admission control to ensure these parameters even in the case of
a highly loaded network. Whereas Predictive Service is just concerned with the
delay, Controlled Load additionally requires a certain throughput to be delivered.
Network nodes therefore need to be much more conservative, when overbooking
their transmission resources.

The IntServ standard contains a collection of ideas not explored in its original imple-
mentation. It discusses the idea of rate-adaptive application, able to modify their output
data rate based on information they receive from the network. According to the stan-
dard, such an application could either be notified implicitly through dropped packets,
or explicitly via some kind of control message. This feedback idea is explored further in
subsequent approaches like MoSaKa (see section 2.3.3 for further details). It is also part
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of this work in the form of a suspend/resume mechanism for actively managing paths
by the network.

Some rate-adaptive applications like video streams could also be managed by removing
less important traffic from a stream first. Modern video codecs output data streams
which consist of different parts with varying importance (e.g. an I-Frame in an MPEG
video stream is always more important to the overall user experience than a P- or B-
Frame). RFC 1633 proposes to mark “expendable” packets in a reserved stream as
“preemtable” and let QoS routers drop them first, in case they cannot meet the required
service quality. Again, this idea is not further explored in the standard, and is left to
other research projects, such as the NOJA multimedia system [Eic08].

IntServ also discusses the idea of a load-based QoS routing. Conventionally, routing
is solely based on local information about the structure of the network and the desired
destination of the packet. This leads to very stable forwarding decisions where every
packet of a stream takes the same path to the targeta.

In a load-based QoS routing system, routers can take the current load situation (possi-
bly along the full path) into account, when making a forwarding decision. Conceivably,
a data stream could switch its forwarding path for every packet, theoretically increasing
the overall service quality. However, such an approach leads to increased jitter, which
hurts the performance of protocols relying on precise timing measurements (e.g. TCP)
and is therefore impractical. The authors of RFC 1633 argue that a system like IntServ
would be able to take a load-based routing decision at reservation time, reaping most of
the benefits, while avoiding the inherent instability. A similar idea is explored in [Vol16]
as an approach for a Future Internet.

The original IntServ RFC specifies a first draft of the Resource Reservation Proto-
col (RSVP). This (incomplete) implementation of the ideas laid out in the Integrated
Services architecture is further described in section 2.3.1.

2.2.2. Differentiated Services (DiffServ)
Deploying IntServ on an Internet-level scale quickly highlights a severe issue: forwarding
nodes in the network core are part of a huge set of reserved paths. They therefore
amass a prohibitively large amount of reservation state and are quickly overloaded. In
order to address this problem, the Differentiated Services (DiffServ) architecture [Nic+98;
Bla+98] was designed with the explicit goal of avoiding per-flow states in the network

aAn exception to this are trunked links, where multiple independent paths are combined to form a
virtual route, typically to increase capacity. In such a setup, packets of the same stream might be
forwarded along different physical paths. Trunking usually occurs on the MAC layer, but can also
be implemented higher up (e.g. for multi-homed networks connecting to different ISPs)
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core.
DiffServ extends simple priority models as specified by the IP Type of Service (ToS)

field [Alm92]. The architecture introduces the notion of a DiffServ Codepoint (DSCP),
a six bit wide marker encoding the desired forwarding behavior for a packet. The DSCP
is stored in the Differentiated Services field, which replaces the older ToS field in the
IP header. The specification mandates that QoS-relevant forwarding decisions are to be
made based only on the DSCP value, without taking any other parts of the packet into
account. Therefore, forwarding nodes in a DiffServ core network do not need complex
packet classifiers which would hinder scalability.

Service quality in DiffServ is realized by applying a specific per-hop-behavior (PHB)
when forwarding packets belonging to a behavior aggregate. Such an aggregate is marked
by a specific DSCP value in the packets’ header. The architecture leaves it to the
operators to define the semantics of a specific DSCP. Nodes that share a common view
on DSCP values form a DS domain. DiffServ does not deal with micro-flows like IntServ.
It instead operates on traffic classes, which greatly lowers the amount of state kept in
an individual node. The exact specifications for the different traffic classes are not part
of the DiffServ specification, but rather subject to Service Level Agreements (SLAs)
between network operators. These SLAs are only enforced at the border of a domain by
DS boundary nodes. The boundary nodes know the mapping between different DSCP
spaces of neighboring domains and have sufficient information about the details of the
QoS connected to a specific DSCP value. That way, DS interior nodes, forming the
core of a domain, can be implemented much more efficiently. They rely solely on the
packet classification, as specified by the boundary nodes, for their forwarding decision.
This significantly reduces the computational complexity of the routing and allows the
architecture to scale to Internet-level demands.

DiffServ offers a consistent QoS view on the network to end systems. No information
about the details of DSCP-mapping inside different domains is needed at the network
edge. However, it does not mandate any way to exchange the necessary QoS information
at the operator level. The information might be transferred manually (e.g. through
contracts between peering networks) or automatically (e.g. by implementing RMD as
described in section 2.2.2.1).

The DiffServ model distinguishes between three basic Quality-of-Service classes: As-
sured Forwarding (AF), Expedited Forwarding (EF) and Best Effort (BE).

Expedited Forwarding [Dav+02] is a building block for a low-latency, low-loss and
low-jitter edge-to-edge service within a domain. This rather simple QoS model handles
all EF traffic within a single queue. This queue is forwarded with a given minimum
rate and protected against other traffic on the same node. Ingress routers limit the
amount of EF traffic entering a domain to the minimum forwarding rate provided by
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the domain, preventing queue buildup – and therefore increased latency – on interior
routers. The exact determination of the forwarding rates on individual nodes is not part
of the specification. This functionality could be provided via external signaling means
like RMD 2.2.2.1.

Assured Forwarding [Hei+99] is more complex than EF. It provides multiple queues for
different types of traffic, each with their individual parameters like queue size, priorities,
scheduling and excess handling strategies. The DSCP value is structured, containing
queue selector and excess treatment information. Ingress routers are therefore able to
finely tune the forwarding of different types of traffic, and build edge-to-edge services
simply by selecting different DSCP values.

As its name implies, Best Effort traffic is forwarded with whatever resources are avail-
able at a node. This includes totally stopping the forwarding, if the other traffic classes
fully occupy the current capacity. Best Effort represents the standard forwarding behav-
ior of Internet nodes without any QoS.

DiffServ targets large-scale networks like the Internet. For performance reasons it
sacrifices isolation granularity for less state in the core network. For a severely con-
strained environment like KASYMOSA QoS, this level of scalability is not necessary.
However, the lack of explicit reservations in the original DiffServ model prevents the
implementation of a resource management as intended in this thesis.

2.2.2.1. Resource Management in DiffServ (RMD)

DiffServ does not mandate any mechanism to set up service level agreements at the
domain boundaries. It merely specifies that these have to exist in order to ensure end-
to-end QoS for the user. One way to automatically implement and manage those SLAs
is Resource Management in DiffServ (RMD) [Wes+02]. RMD introduces the reservation
of resources and admission control into the DiffServ architecture.

According to [Wes+02], RMD pursues two main goals: keep DiffServ scalable by
limiting complex, per-flow reservation state to a small set of nodes (called “edge nodes”),
while still being able to guarantee end-to-end QoS by associating flows with reserved
resources. It achieves those goals by still reserving resources for all flows on each relevant
node, but aggregating the state information towards interior nodes into traffic class
reservations. This allows each flow to be accounted for by a specific reservation (namely
the corresponding part of its traffic class on each router), while still keeping the state
stored on interior nodes small by minimizing the number of traffic classes.

RMD defines two signaling protocol types: the more complex Per Domain Reservation
protocol (PDR), which is responsible for the signaling of detailed reservations on the
edges of a domain, and the simpler Per Hop Reservation protocol (PHR) used inside a
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domain along each hop of a path.
RMD is protocol-agnostic. On the PDR level, protocols such as RSVP or an appro-

priate model for NSIS can be used. The architecture places a set of requirements on
the PDR (e.g. the support of admission control and maintenance of a per-flow state
in the edge nodes), but does not define its detailed operation. The specification states
that new protocols are to be defined on the PHR level. These are supposed to be in
one of two classes: reservation-based PHRs, which install reservation state per PHB on
each internal router, and measurement-based admission control PHRs, which rely on
the measurement of existing traffic flows through a node for their admission decision.
The latter do not install any state on the node. The specification does not indicate how
the system distinguishes between different types of traffic (e.g. reserved and unreserved
traffic or different priorities) in order to support preemption mechanisms. One of the
protocols specified to the PHR plane is Resource Management in Diffserv On DemAnd
(RODA) PHR [Wes+03], whose core ideas later migrated into the RMD QoS model of
NSIS.

The RMD-QOSM defines RMD in terms of an NSIS QoS model. It specifies the
necessary messages and their respective interpretation to actually control DiffServ classes
via NSIS signaling. The intended operation is the automation of QoS changes at the
domain boundary, depending on current requirements. The NSIS operational model is
described in more detail in section 2.3.2.

2.2.3. Component Quality Modeling Language (CQML)
The Component Quality Modeling Language (CQML, [Aag01]) is a system for modeling
QoS requirements. In itself, it does not represent a specific model like IntServ or DiffServ,
but rather provides the tools to express QoS parameters and their relationships.

Through its tight integration with the Unified Modeling Language (UML, [UML]),
CQML is focused on specifying QoS models in all parts of the software design process.
Individual components can offer and require certain types of QoS parameters represented
by CQML models. While not being concerned with QoS signaling and provision in a
network, the approach nevertheless contains modeling ideas worth investigating.

CQML introduces the idea of Predefined adaptation, i.e. adaptation of QoS parameters
without interaction with the requesting entity. The system assumes, that not all possible
values from the value space of a QoS parameter are actually useful in the context of a
given use case. If a certain application, for example, supports a high and low bandwidth
profile, it is usually not beneficial to allocate any amount of bandwidth between those
two. This allocation would not provide enough for the high bandwidth transmission
and waste resources for the low bandwidth case. CQML uses the Object Constraint
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Language (OCL) to guide the adaptation process. In OCL, boolean expressions define
invariants over the parameter value, which always have to evaluate to true. Network
nodes can use these invariants to guide the resource allocation process.

The system also introduces the notion of composite QoS parameters. A parameter
composite is formed by introducing dependencies between individual QoS parameters.
Again, OCL expressions define the behavior of the parameters under different composi-
tions. CQML introduces three different composition types: sequential (one QoS-capable
component using the services of another), parallel-or (a component using one of two
other components. The latter are said to be in a parallel-or composition) and parallel-
and (a component using the services of two other, but unrelated components, at the
same time). For each composition type, different QoS parameters may behave differ-
ently. The author gives the example of a composable startup time parameter: for two
sequential components, the resulting startup time is the sum of the two constituents.
In a parallel-or composition, it is the minimum of the two startup times (whichever
dependency is active first provides the service). Finally, in a parallel-and composition,
the resultant time is the maximum startup time of all related resources (the service is
available when all constituents are active).

CQML is focused on the design of software components and provides a framework for
developing a QoS model. It is not an implementation of a working system. However, its
notion of QoS invariants modeled as expressions over QoS parameters inspired parts of
the research described in this thesis.

2.2.4. HTTP/2 Stream Dependencies
The Hypertext Transfer Protocol Version 2 (HTTP/2 [PR15]) is the next generation
transfer protocol for the World Wide Web. Just like earlier incarnations HTTP/2 is a
Request-Response-based system for accessing uniquely identified resources on a server.
Modern web pages and applications usually comprise dozens, if not hundreds of indi-
vidual resources like HTML pages, images, stylesheets and program code in the form
of JavaScript files. These additional resources are referenced from the content initially
accessed by the user and are – depending on their type and the type of their relation to
the entry point resource – automatically loaded by a user agent.

HTTP/2 is much more focused on the transport of a high number of resources to
a single client, than its predecessors were. To do so efficiently, the protocol supports
multiplexing different streams over a single TCP connection. The system offers clients
a form of QoS through a stream priority interface to indicate in which order they wish
to receive a set of resources. Clients could use this system to prioritize resources that
currently block content rendering to the user (e.g. CSS stylesheets), over ones that can
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be filled in later (e.g. images contained in a web site).
In order to implement resource prioritization, HTTP/2 implements a simple stream

dependency system. A stream can depend on another currently active stream, by mak-
ing the dependency its parent stream. To the multiplexing algorithm, this indicates a
preference for the parent, when allocating transmission resources. A stream can be ref-
erenced by multiple dependent streams, effectively increasing its priority in the overall
stream tree. The protocol also supports a specific kind of dependency called “exclusive”,
which removes all existing dependees from a stream, puts the new stream in their stead
and makes them children of this new node in the tree. This operation acts as a kind of
“insert” into the tree, instead of just adding another child. However, the specification is
unclear on the intended use case of this dependency type.

HTTP/2 as an application protocol is not directly applicable to a QoS layer. While its
stream dependency system does provide some level of modeling power to supply relation
information to a network, it is narrowly focused on the Web and can only serve as an
inspiration for a more general QoS system.
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2.3. Signaling protocols
Network QoS, as an inherently distributed system, has brought about its share of sig-
naling protocols to synchronize state over different nodes. The two prime contenders
are the older Resource Reservation Protocol and Next Steps in Signaling, as standard-
ized approaches for general QoS use cases. Additionally this section takes a look at the
MoSaKa signaling protocol, the direct precursor of the work presented in this thesis.

2.3.1. Resource Reservation Protocol (RSVP)
The Resource Reservation Protocol (RSVP), as initially described in [Zha+93] and ex-
panded as a proposed Internet standard in [Bra+97], is the original signalization protocol
of the Integrated Services architecture. It provides the necessary protocol operations to
signal state changes for flow reservations, that form the basis of IntServ.

One of the central design goals of RSVP was its suitability for signaling large IP
multicast distributions. In multicast transmissions, the sender does not necessarily (or
even usually) know the receivers. Keeping this in mind, RSVP was designed as a receiver-
initiated protocol. While it can efficiently be used as a signaling protocol for unicast
streams, receiver-initiated operation especially shines in the multicast case. After a host
joins a multicast group, it sends an initiation message along the reverse distribution
path of the group towards the source. When the message is processed by a router along
the way, which already is connected to the distribution tree and has the appropriate
resources reserved, instead of passing it on, this router completes the reservation process
by sending the appropriate message downstream. This way, RSVP messages only travel
the minimum distance in the network before attaching to a multicast group.

The protocol operation is simplex, i.e. handling a single, unidirectional reservation
in one signaling exchange. To describe the characteristics of such a reservation, RSVP
uses a flow descriptor, a data structure consisting of a flowspec and a filter spec object.
The filter spec contains information necessary to classify traffic as belonging to a specific
reservation. The underlying Internet Protocol does not define the context of a flow or a
path, but considers the packet as the basic unit of information. In order to build a path
on top of IP, each relevant network node needs a way to recognize packets belonging to
the same flow, e.g. by source and destination IP addresses, transport layer protocol and
source and destination port (where applicable).

The flowspec represents the actual QoS parameters for a specific path. RSVP itself
considers the contents of the flowspec as opaque. Their interpretation is subject to the
actual reservation model employed by the network.

The protocol was designed as an extensible protocol. One interesting extension, which
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found its way into NSIS QoS-NSLP (see section 2.3.2.2), is the concept of a Preemption
Priority and a Defending Priority as defined in [Her01]. Instead of serving flows in a
“first come, first admitted” manner, or reordering them by a single priority value, this
model relies on two values. A flow is admitted, if its preemption priority is higher than
the defending priorities of existing flows (existing flows with a lower defending priority
are preempted until enough resources are acquired). Once it has be admitted, a flow
defends its position with the defending priority. The system can be tuned to be either
more stable (by having high defending and low preemption priorities) or more reactive to
new reservations (by bringing those values closer together). The single-priority behavior
can be modeled by either leaving out this parameter or setting preemption and defending
priority to the same value.

RSVP falls short in several respects for the environment envisioned in this work. By
design as a simplex protocol, it cannot easily, if at all, bind multiple paths to a more
complex reservation structure. As the protocol is always receiver-initiated, a simple reser-
vation setup for a TCP connection already presents a critical problem: each participating
system needs to reserve its own receiving flow. Which endpoint would signal the rela-
tionship between both paths and thereby “own” the overall structure is unclear. While
these problems are far from impossible to solve, no solution exists so far. RSVP also
only provides only a rudimentary feedback mechanism for adaptation scenarios. The
network can actively tear down reservations in case it can no longer guarantee them.
However, it provides no way to enable them again once the capacity is available again,
short of the end systems periodically requesting the necessary resources.

2.3.2. Next Steps in Signaling (NSIS)
The quest to establish a flexible system for transmitting signaling information in the
Internet led to a whole series of research and specifications that can be (and often is)
summarized under the name Next Steps in Signaling (NSIS) [Han+05] . NSIS is not so
much a protocol, as a framework and collection of ideas to specify protocols for any kind
of signaling need arising in a network. The analysis here will focus on the QoS-relevant
parts.

To make the implementation of NSIS both simpler and more flexible, the system is
divided into two layers: a transport layer implemented by an NSIS Transport Layer Pro-
tocol (NTLP) and a signaling layer formed by an NSIS Signaling Layer Protocol (NSLP).
Each of the layers can be implemented by different protocols for different tasks (in the
case of NSLP the different implementations may even run in parallel on the same sys-
tem). Supplementary specifications to NSIS provide standard solutions for specific layer
tasks, which can be replaced, provided that the alternatives keep with the overall model
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of NSIS.

2.3.2.1. NTLP

Despite its name, the NSIS Transport Layer Protocol is not a ready-to-implement pro-
tocol, but rather a meta-specification, that actual NTLP specifications must adhere
to. A possible standard implementation of an NTLP is the General Internet Signaling
Transport protocol (GIST) [SH10; Tse+10], examined later in this section.

NTLP is responsible for forwarding signaling messages between NSIS Entities (NEs),
that are in a peer relationship (i.e. networks nodes communicating directly via an NTLP
link). NSIS Entities are network nodes that support the NSIS framework (in the most
basic sense: nodes that are able to communicate via a given NTLP). NTLP is only
concerned with forwarding messages between these entities. The actual content of the
messages is outside the scope of the protocol. It is only concerned with the message type
insofar as it needs to make a forwarding decision: a message can either be transparently
forwarded to the next hop, or handed to a specific signaling application for local pro-
cessing. NTLPs are especially required to forward unknown message types, for which
no local application exists. This is particularly useful for integrating new NSLPs, with-
out deploying them on every intermediate node of a network. It also benefits scenarios
where only ingress and egress nodes of a network implement certain signaling functions
(e.g. the integration of DiffServ domains into an IntServ path. In that use case, only
the network boundaries need access to the full reservation structure).

The decoupling of the transport and signaling tasks shifts the responsibility for main-
taining an end-to-end relationship to the NSLP. A specific NTLP link is not concerned
with anything beyond two immediate neighbors. According to [Han+05] this approach
was chosen to limit the effects of changes to an NTLP to a specific link or network,
without affecting the Internet as a whole.

Even though NTLP is not concerned with any issues outside of the link scope, it ac-
knowledges the existence of such issues by offering an optional notification mechanism.
A specific NTLP implementation may choose to offer notifications about link changes
to any interested signaling application (e.g. an IntServ-based QoS-NSLP, which is in-
terested in detecting route changes to adapt reservations accordingly). The NTLP itself
does not handle these notifications in any way, beyond what is necessary for message
transport. It is up to the signaling application to trigger any further actions.

NTLP operates in a path-coupled mode, meaning that the signaling and data traffic
of an NSIS path cross the same NEs. As NTLP does not assume that every node along
an IP end-to-end path is an NE: there may be additional IP hops between two NSIS
routers. The routes on these hops may even diverge between IP and NSIS traffic. It is the
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responsibility of the NEs, to configure these additional hops in such a way to as ensure
the required reactions to the signaling requests (e.g. by setting up QoS reservations
using local means).

One thing NTLP is explicitly not, is an actual protocol specification. It is a framework
for designing one. An instance – so far the only one – of an NTLP is the General Internet
Signaling Transport.

General Internet Signaling Transport protocol (GIST) With NTLP as described
in [Han+05] only being an abstract specification of requirements for signaling trans-
port protocols in the NSIS context, a standard implementation is needed for the most
prevalent type of network today: the Internet. This role is filled by the General Internet
Signaling Transport (GIST) [SH10].

One of the main goals of GIST is the reuse of existing protocols. The Internet protocol
world has solutions for nearly every possible communication requirement. Reusing those
tried and trusted approaches eases the implementation of GIST and thereby should make
adoption faster.

In line with the NSIS communication model, GIST forms connections (Message Associ-
ations (MA))) between neighboring NSIS entities using an underlying transport protocol.
While the specification allows for any kind of protocol, it currently mandates the use of
the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) for
two different kinds of transmission modes:

Datagram mode In datagram mode, GIST forwards messages without prior message
association setup. Signaling requests are forwarded in UDP packets. This mode
severely limits the capabilities of GIST to a “fire-and-forget” forwarding fashion.
One of the primary uses of the datagram mode is a special case called Query mode.
This is used to discover the next NE along the path towards a specific signalization
target. In query mode, a packet is sent towards the endpoint for which it is destined,
instead of directly addressing the next NSIS node on the path. The packet has
the IP Router Alert option header [Kat97; PJ99] set, indicating for every node
along the IP path to examine its contents outside the normal forwarding path.
The next NSIS node along the path intercepts this packet and may become the
corresponding peer of the sending node by establishing an MA. This way GIST
discovers unknown forwarding paths towards a target. The approach also allows
GIST to cross NSIS-unaware IP routers by exploiting the normal IP forwarding
process.

Connection mode This mode forms a message association between two neighboring NEs
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based on a TCP connection. It provides a whole set of additional features over
datagram mode, such as the fragmentation of large messages, reuse of an MA for
the transmission of several different signalization processes or security (using the
Transport Layer Security protocol [DA99; DR06; DR08], version 1 or above). Con-
nection mode forms long-term relationships between neighboring entities. While
initially including more overhead for the setup of the connection (TCP handshake,
possibly TLS handshake and other initialization routines), this overhead is spread
out over the potentially unlimited number of signaling requests, that can be trans-
ported over the same link. The authors of [SH10] state, that “[there] may be any
number of MAs between two GIST peers, although the usual case is zero or one”,
meaning that they expect two nodes to either have no relationship at all, or reuse
one connection to handle all their signalization needs.
Connection mode via TCP does have the disadvantage of providing strict in-order
delivery for what is basically a message-oriented protocol, where objects may have
a specific lifetime. In lossy environments this could lead to urgent messages being
blocked by the retransmission of already stale signaling on the same connection. To
prevent this kind of problem, RFC 6084 [FDC11] optionally defines the use of the
Stream Control Transmission Protocol (SCTP [Ste07]) as the underlying transport
layer. SCTP offers multiple independent transmissions in one delivery-guaranteed
channel, effectively disabling the strict (and unnecessary) order guarantee of TCP.
It also provides capabilities like multihoming, where each endpoint in a connection
may be reachable under multiple IP adresses. Together with Datagram Transport
Layer Security [RM12] SCTP serves as a secure, reliable transport layer for GIST
even in lossy environments.

The different transport modes can be mixed along the same signalization path. RFC
5971 [SH10] gives the example of a network using connection mode in the core, where
long-running relationships between NEs are common. The system switches to datagram
mode at the network edges, where mobile nodes with frequent path changes may make
message association setup prohibitively expensive. The selection of the actual transmis-
sion mode is up to the GIST layer. From the point of view of the signaling application,
there is no way to request one approach or the other.

How a GIST node makes the forwarding decision depends on its specific implementa-
tion. RFC 5971 specifies two Message Routing Methods (MRM) (modules that implement
the forwarding decision making):

Path-coupled MRM The path-coupled MRM is the standard routing method for GIST.
It forwards signaling concerned with a specific path along the nodes on this very
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path. This MRM is therefore most suited for NSLPs that inform or modify entities
along the data path (e.g. by creating resource reservations).

Loose-end MRM This MRM “is used to discover GIST nodes with particular properties”
along the routing path [SH10]. An example is the discovery of network-address-
translation (NAT) nodes, which may require special handling to allow NSIS to
work.

The current set of MRMs does not support the signaling of multicast requests. The
authors of RFC 5971 claim that the GIST communication model could be easily extended
to support such a requirement, provided that the multicast distribution points are NSIS-
capable.

NTLPs provide a very flexible signaling transport suitable for a wide range of appli-
cations. As they are signaling-agnostic (i.e. they consider the actual signaling messages
as opaque), they can be adapted to nearly any kind of environment. GIST (in par-
ticular with SCTP as the underlying signaling protocol) fulfills the requirements and
environment conditions assumed in this thesis well, and could serve as KASYMOSA
QoS’s transport layer. Its only disadvantage is its implementation complexity which
stems stemming from the flexibility of the protocol. Section 4.3 goes into more detail
regarding the use of GIST for the purposes of this work.

2.3.2.2. QoS-NSLP

The NSLP for Quality-of-Service Signaling (QoS-NSLP [MKM10]) provides a framework
for signaling QoS-related information via NSIS. The overall design approach is similar
to that used in RSVP: state management is done via soft states with periodic refresh.
QoS-NSLP deviates from the set of features offered by RSVP by adding sender- and
receiver-initiated reservations, bidirectional reservations, and reservations between arbi-
trary nodes (as opposed to only end-to-end reservations in RSVP). In line with NTLP,
QoS-NSLP does not provide support for IP multicast.

In order to keep the QoS signaling process as flexible as possible, the protocol does not
mandate a specific QoS model. All necessary information beyond the simple transfer of
QoS signaling messages (e.g. admission control or the Resource Management Function)
is left to the model. This allows the protocol to be flexible enough to implement anything
from IntServ Controlled Load [KFS11] to DiffServ [Bad+10] signaling.

QoS-NLSP specifies four basic message types: RESERVE, QUERY, RESPONSE and
NOTIFY. RESERVE and QUERY act as requesting messages, with RESERVE causing
changes in the reservation state, whereas QUERY just obtains information. RESPONSE
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serves as a reaction to a previous request and NOTIFY implements asynchronous noti-
fications. The protocol does not specify the actual content and meaning of the message
body or their specific order in an exchange. These topics are left to implementing QoS
models that are able to build on the given primitives to provide their service.

In order to identify a specific signaling flow in the network, QoS-NSLP uses the Session
ID as given in GIST [SH10]. Building on these identifiers, sessions can be bound together
using a BOUND-SESSION-ID protocol object. This allows models to implement unidi-
rectional dependencies between different sessions. [MKM10], section 3.2.8 presents two
examples of dependency relations, that can be modeled with bound sessions: the depen-
dency of an end-to-end session on its corresponding aggregate session somewhere in the
network (for session aggregation use cases) and the dependency between two sides of a
bidirectional session (in which case both unidirectional sessions would include the other
in a BOUND-SESSION-ID object). QoS-NSLP allows to further specify the type of ses-
sion binding by a binding code. The specification includes a list of five atomic binding
codes open to extension by the QoS model. The exact interpretation of a session binding
is not mandated by QoS-NSLP.

As a flexible framework for building actual QoS signaling protocols, QoS-NSLP is non-
opinionated about the actual reservation model. RSVP-style sender-initiated reservation
is possible the same way as receiver-initiated or bi-directional reservations. The protocol
specification even discusses – albeit in little detail – a stateless operation, which would
supposedly operate without any reservation state at all. By specifying the message flow
for different reservation models, QoS-NSLP provides a frame into which the actual im-
plementation can just drop its messages and rely on the existing underlying mechanisms
for delivery.

State installed in the network is handled a soft-state approach, just as RSVP does: the
state information carries a lifetime and expires if not refreshedb. While this approach has
the disadvantage of causing increased overhead due to periodic refreshes, it provides the
huge benefit of a “self-cleaning” network. Especially in the mobile case, where routing
paths may change without prior notice, making it hard or even impossible to transmit
explicit tear-down messages, a soft-state approach ensures that eventually the left-over
reservation state will be removed and the acquired resources freed. QoS-NSLP tries
to minimize the overhead caused by periodic refreshes by providing a reduced refresh
feature. Instead of transmitting the whole request again for refresh, the request initiator
is allowed to transmit only the session ID to indicate an unchanged path.

bThis seems to somewhat contradict the stateless operation mentioned before. QoS-NSLP is fundamen-
tally a stateful protocol. What a stateless operation could look like and what it would actually be
used for is not further specified.

38



2. State of the art

QoS-NSLP QSPEC template While QoS-NSLP does not mandate a specific Quality-
of-Service model (QOSM), it acknowledges the fact that there are some recurring ele-
ments in each system. RFC 5975 [Ash+10] specifies an extensible message template on
which specific QOSMs can be built.

The basic building block specified by the RFC is the eponymous QSPEC . It carries all
information necessary for a specific QOSM to fulfill its function. According to [Ash+10],
“QSPEC parameters provide a common language to be reused in several QOSMs”. Each
QSPEC can contain up to four distinct QSPEC objects to signal different intentions to
the QOSM:

QoS Desired This object indicates the QoS parameters desired by the NSIS QoS Ini-
tiator (QNI) to successfully carry out a transmission.

QoS Available Using this object, the network can indicate which QoS parameter values
might be available. This could allow an application to adapt to the currently
available resources.

QoS Reserved When carrying out a reservation, the network indicates the resources
actually reserved using the QoS Reserved object.

Minimum QoS In order to facilitate a kind of automatic adaptation of the QoS reserva-
tion, a QNI may include the Minimum QoS object. The parameters in this object
represent the worst conditions under which a reservation can be considered suc-
cessful. They might (and generally will) be worse, than the QoS Desired, but will
allow the application to function. If Minimum QoS is not available, the reservation
has to be rejected.

Each QSPEC object consists of a set of QSPEC parameters which encode the informa-
tion necessary to drive the QOSM. RFC 5975 [Ash+10] defines a basic set of parameters
useful to most of the envisioned use cases, leaving the option to extend that set where
necessary.

Only one parameter is mandatory: the Traffic Model(TMOD). This parameter de-
scribes the reservation in terms of a token bucket meter with a token rate and a bucket
size, as well as additional parameters like peak rate or maximum packet size. A QNI has
to include this parameter in its QSPEC and all QNEs along the path must interpret it.

All other QSPEC parameters are optional. However, the specification does provide
a way for a QOSM to mark a parameter as mandatory (the M flag). Using this flag,
the initiator can distinguish between parameters that are essential to a reservation, and
informational parameters that should not cause a reservation to fail. Two other flags are
used to complete the extension mechanism: the N flag (for “not supported”) is set by a
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QNE if it does not support the interpretation of an optional parameter. This allows the
QNI to adapt its behavior, if necessary. The E flag (“error” flag) is used by the QNE to
indicate that a parameter is supported but the required demands cannot be met. This
allows the reservation process to continue, while still indicating that some restrictions will
apply due to unmet optional requirements. These flags provide a standard mechanism
to enable extensibility of the protocol, as it allows for QOSMs to include the optional
parameters for better performance, while still being compatible with a more basic set of
functions of a simpler model.

The additional parameters defined in the specification are divided into three groups:
path constraints, such as latency and jitter, traffic handling directives like preemption
and defending priorities, and traffic classifiers, e.g. a DiffServ Code Point. QOSMs can
draw from this standard set to build their signaling model or extend them by the means
described above.

A further extensibility mechanism is the ability to nest QSPECs in one another. A
QOSM could define a simpler local QSPEC, just intended for use in one domain (similar
to the local interpretation of DSCPs in DiffServ), and carry the initiator QSPEC along
with the local signaling as a nested object. In deriving a local QSPEC, a QOSM must
not violate the requirements of the initial request, but it is free to transform it into a
parameter set more suitable for its needs (e.g. by aggregating it with an already existing
local reservation of the same class). Upon leaving the local domain, a QOSM is able to
restore the nested object and pass on the signaling as intended by the initiator.

An important aspect of the behavior of a QoS entity is the treatment of excess traffic.
If a misbehaving sender exceeds its requested bandwidth, the network has to protect
itself and other flows. The QSPEC template specifies an Excess Treatment parameter,
indicating how this situation should be handled. Packets can be either dropped, shaped,
re-marked as another (signaled) class, or classified as best effort and be transmitted
along with the rest of the unreserved traffic. The template also specifies a special excess
treatment parameter which effectively disables any policing and shaping by a network
node. The network in this case must not in any way impede the traffic flow of a reser-
vation under that scheme. The specification warns implementers to ensure that a node
should only accept such a reservation if it can handle any amount of traffic a sender could
possibly transmit (e.g. by taking incoming and outgoing link capacities into account).

The specification is unclear on whether multiple requests could be sent within a single
signaling transfer. However, it clearly states that under no circumstances can QSPECs
for two different link directions travel in the same message. This complicates signaling
of path relationships significantly, as it makes it impossible to signal all reservations and
their relations in one transaction-like step.

With the stated goal of being a flexible base for the specification of QoS models, the
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QoS-NSLP QSPEC template provides a rich set of building blocks from which these can
draw. This framework has been used to define various concrete QOSM for specific tasks,
such as the QoS-NSLP for IntServ Controlled Load.

NSIS and QoS-NSLP could serve as a basis for KASYMOSA QoS to some extent.
By using SCTP as a transport protocol for GIST, TCP’s issues in long-delay, high-
loss environments can be avoided. However, in order to effectively transmit multiple
reservations along with their relations, an extension of the existing QoS-NSLP QSPEC
template would be necessary. The implications this has for the rest of the protocol
operation are beyond the scope of this work. While KASYMOSA QoS’s path model
is inspired by GIST’s segmented overlay network, it does not use NSIS as its signaling
framework, but leaves the adaptation of the protocol to future work.

2.3.3. MoSaKa Signaling
The MoSaKa signaling QoS system [Hei+10; DEB12] is a precursor to the work presented
in this dissertation. Its main focus is on supporting efficient QoS handling in a long-
delay satellite network by enabling the network to suspend and resume paths when
necessary. The approach stems from the observation that link capacity in a mobile
satellite communication system is highly volatile, while signaling round-trip times are
long.

MoSaKa builds on the idea of network-based adaptation, as presented by preemption
models in earlier works, and extends it to include the concept of a temporary suspension
of a path. Instead of removing a reservation and requiring the initiator to poll the
network for a future capacity change, paths are put into a suspended state. In this state,
the network still retains control over the path’s fate, immediately resuming it when the
transmission capacity is sufficient again.

Allowing the network to suspend paths leads to reduced signaling overhead and faster
reaction to changes in capacity. Especially the lower overhead is significant, as it is
mostly saved in a situation where the network experiences congestion anyway. Having
initiators poll for resources at this point only introduces additional traffic, ultimately
making matters worse.

Similar to RSVP, Mosaka implements a single-roundtrip signaling process, based on
UDP as the transport protocol. An initiator sends out a request towards the peer, which
is routed on the intended path. MoSaKa-capable routers along the way intercept the
request packets and process them. MoSaKa saves transmission overhead by signaling
multiple requests in a single exchange. This allows the system to reserve multiple related
paths (e.g. the two directions of a TCP connection) with one signaling exchange.

MoSaka allows both endpoints of a path to initiate the reservation process. While this
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makes limiting the number of requests for bidirectional reservations possible, it leads to
the requirement of symmetric routing. RSVP, as a sender-initiated protocol, discovers
the actual downstream path by means of the PATH message. The actual request is then
transmitted from the receiver to the sender along that path. MoSaKa, on the other hand,
transmits the reservation message from the initiator to the peer and back, reserving all
requests on the second leg of the exchange. In this model, the transmission direction of
the signaling message does not necessarily coincide with the direction of the data flow
of a reservation. If such a system is deployed in a network with asymmetric routing,
resources may be created on routers which are never crossed by the actual data path.
As MoSaka is geared towards satellite systems with a single transmission link over the
satellite, this issue does not occur in practice.

MoSaKa fulfills a number of the requirements presented in section 1.2.2.2. Taking
an IntServ-like approach with per-flow reservations, the system provides isolation on
the path level. With its one-roundtrip signaling process, MoSaKa limits the number
of interactions at the initial path setup to the lowest possible level. The system also
provides a way to adapt to a changing environment by suspending and resuming paths.
This approach significantly lowers the amount of signaling required in case of a temporary
resource shortage, as the network is responsible for suspending and resuming paths, and
no expensive polling by clients is necessary. However, MoSaKa fails to correctly suspend
paths that might be dependent on each other, still requiring the initiator to take action
in this regard. MoSaKa also uses periodic refresh messages to manage the lifetime of a
path, using additional transmission resources.

The Flexibility/Expressiveness requirement does not fully apply to the system. Its
focus is more on the signaling side than on modeling QoS requirements. The model
employed in MoSaKa is therefore a simple datarate-only model without any additional
complexities. While this could be expanded in the future, no work in that direction has
been done so far.

MoSaKa’s signaling approach provides compatibility to existing network resources.
Similar to the D-Mode of GIST, MoSaKa’s signaling messages are always addressed
to the remote endpoint of a path, relying on normal IP routing to discover the paths
along the way. MoSaKa-capable routers intercept passing messages along the way, taking
action as needed. This way, MoSaKa is able to cross legacy networks without interacting
with them. MoSaKa does not provide means for the initiator to detect such a legacy
system. The protocol assumes that the peer is MoSaKa-capable, as the signaling protocol
calls for the messages to be reflected at the remote end. The system is therefore not
capable of making partial reservations along a path to a legacy server. As MoSaKa relies
on standard IP routing along an end-to-end path, it also does not support asymmetric
routing (i.e. different up- and downstream paths) or multicast reservations.
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The system employs standard techniques, such as initiator-based retransmissions and
a soft-state approach for path lifetimes to cope with lossy networks. Requests are retrans-
mitted and, if necessary de-duplicated, if they fail to be acknowledged. Paths have to be
periodically renewed with explicit refresh messages and are garbage-collected, if those
messages are absent. This makes the system robust against lost management requests
like path deletion, but vulnerable to lost refresh messages.

Overall, MoSaKa, as a specialized protocol for the very environment this work is
targeting, already fulfills a large part of the system requirements. This work, as a
successor to the MoSaKa system, builds on the experiences of said project and extends
it by a relation model. It modifies the state handling of its predecessor, to better integrate
multicast reservations and extends its reservation model to accommodate interactions
with the relation system.
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The focus of this work is on the development of a QoS model suitable for unreliable, long-
delay environments. The underlying question is how a flexible and expressive model can
improve the overall service quality and help to better utilize the resources available. In
line with the requirements described in section 1.2.2.2 the design of the QoS model rests
on a set of assumptions:

Reservations are related Most of the reservations in the system do not stand alone, but
are related to each other. An example is a reserved TCP connection for a file down-
load: it consists of a high data rate flow path from the server to the client and a
low data rate path in the opposite direction, carrying the TCP acknowledgements.
Possible relations are discussed in more detail in section 3.3. Modeling these re-
lations should provide the system with a more accurate idea of the best resource
allocation in case of overload situations.

Round-trips are expensive Given the envisioned environment this system operates in,
a round-trip along a path takes a significant amount of time. The system should
therefore provide the network with enough information to make decisions au-
tonomously, without consulting the initiator.

Capacity varies Operating in a highly variable environment, the system cannot be ex-
pected to provide stable link capacities under all circumstances. The reservation
setup constantly needs to be adapted to currently available resources. However,
changes in the environment are transient. Therefore, minimizing the delay to react
to changes helps to better match capacity and demand in the system.

These assumptions influence both the service model and the transport system. The
following chapter presents the design for a suitable QoS model which provides the ex-
pressive capabilities to describe reservations and their relationships. Resource allocation
in a constrained environment is an instance of the Knapsack optimization problem. Sec-
tion 3.4 will present the underlying theory, design appropriate value and cost functions,
and show an optimization approach based on Mixed Integer Linear Programming to find
the best allocation.
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3.1. Definitions
The following parts of this chapter use a concise formal description of the model. This
description relies on some definitions:

Path A path through a network is a sequence of network nodes (vertices) connected by
unidirectional data flows (edges), through which packets travel en route from a
sender to a receiver. The sequence of vertices includes the sender as the first and
the receiver as the last element.
In the context of this work, paths include only nodes that are concerned with
the provision of a specific requested service quality. If legacy nodes without QoS
support are to be viewed as part of a path (e.g. when looking at the actual routing
of packets), they are explicitly referred to.

Initiator The initiator of a QoS path is the network entity that sets up the path and
therefore owns and controls it. In a path-coupled system, such as the one presented
here, the initiator is an endpoint of the underlying network path. While a path
might be reserved on behalf of another system (e.g. a node that is not QoS-capable),
it passes the initiator nonetheless.

Peer The peer of a QoS path is the endpoint opposite of the initiator.

Path segment A path segment is a part of a path between two neighboring nodes. End-
to-end QoS is achieved by the start node of each segment applying the appropriate
forwarding decisions, shaping the traffic as a result.

Flow A flow is a set of packets to which the same QoS is applied.

Reservation A reservation pi describes the QoS information for specific traffic at a
router. Each reservation consists of two parts: a Parameter and a Filter object
The Filter object designates the traffic, to which a specific reservation applies
(similar to the TSPEC object in RSVP). The Parameter object, on the other hand,
describes the expected QoS parameters (e.g. data rate or maximum delay) for said
reservation.
Each reservation corresponds to a specific segment of a QoS path. Different seg-
ments along a path may have different parameter sets, depending on the specifics
of the forwarding path. This allows forwarding nodes to adapt reservations as
necessary (e.g. to aggregate reservations into larger classes like RMD [BWK04]
does).
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Reservation set The reservation set Q represents the set of reservations currently known
to a node, regardless of their state. The reservation set has a corresponding index
set I containing the indices of all paths in Q. The resource allocation on a router
is subject to capacity constraints on individual network interfaces Ni, each with
their own corresponding set QNi

⊆Q and INi
⊆ I .

Reservation state The reservation state indicates whether a node currently guarantees
the QoS parameters requested in the reservation.
The state of a reservation pi is expressed by the state variable si (i ∈ I):

si =

¨
1 if pi has the required resources assigned
0 otherwise

If the state of a reservation is 0, then no guarantees whatsoever are given as to how
(or whether at all) the associated flow is forwarded. This corresponds to the best
effort service provided by standard IP. Due to the dynamic nature of the resource
assignment, the reservation state is transient.
An end-to-end QoS path may rely on the state of more than one reservation along
the path to provide the requested service. Due to the distributed nature of decision
making in the network, the state of these reservations might differ from one another.
It is the task of the QoS system, more specifically, the signaling process, to resolve
this inconsistency.

Relation A relation is a function r : Bk → B, with B = {0,1}, k ∈ N+, mapping a k-ary
vector of reservation states to a truth value. This models application specific rela-
tionships between different flows, such as the two directions of a TCP connection
which cannot exist without each other. If a relation evaluates to 1, it is said to be
fulfilled. Relations are further described in section 3.3.
Each relation has a corresponding related set Fr ⊆Q of children.

Relation set The relation set R is the set of relations known to a node.

Resource allocation A resource allocation ai ∈ Bk is a k-tuple of reservation states.

ai = (sk−1, . . . , s0) where s j is the state of the reservation p j ∈Q

As such, ai describes a specific assigment of resources to reservations.
A resource allocation does not necessarily satisfy all relations known to a node.
However, barring contradictions in R, an optimal resource allocation should not
violate any relations at all.
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3.2. Reservations
Reservations – as the name implies – are the core of a reservation-based system. They
define the QoS parameters supported and therefore the service-model offered. However,
in the context of this work, the exact structure of the reservations actually plays a minor
role. The main focus of KASYMOSA QoS is on the modeling of relations between
reservations. As such the system is orthogonal to the actual reservation model used (with
the exception of parameter interactions as described in section 3.3.3). The reservation
model described here is therefore mainly driven by the requirements of KASYMOSA,
the project in whose context this research was carried out. Other models with different
parameter sets (e.g. NSIS QoS-NSLP’s QoS Desired and Minimum QoS objects) might
be possible.

Reservations are inherently local to a specific network node. KASYMOSA QoS pro-
vides end-to-end QoS by chaining a set of reservations along a path. The actual handling
of a reservation is specific to an individual node and only concerns other network nodes
as an event source for state transitions. The following sections therefore always refer to
the QoS system of a single node only.

3.2.1. Parameters
At its core, KASYMOSA QoS is a soft-state Token Bucket Metering model [TW10], with
support for delay limitation and a priority model. The Parameter object can contain
the following information:

Data rate The data rate is the sustained rate with which this reservation forwards traffic
through the network. It corresponds to the token rate of the Token Bucket model.

Bucket size The size of the bucket of the Token Bucket Meter. While this is not equal to
the maximum burst size, it is indicative of the amount of burst data a reservation
is expected to carry.

Excess Treatment If a flow exceeds its reservation, routers can treat the excess traffic
by either dropping it immediately or queuing it as best effort traffic. Using this
field, an application can indicate its preference for one of the two options.

Maximum Delay In the KASYMOSA satellite system, traffic can be forwarded on dif-
ferent physical layer transmission streams. Each stream provides distinct levels
of error protection at specific transmission costs in terms of delay and physical
layer resources. In order to assist the decision making when mapping reservations
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onto physical layer streams, applications can indicate the maximum delay their
transmission can tolerate.

Priority KASYMOSA’s target environment is a disaster area where communication
mostly follows a hierarchical structure. Modeling this hierarchy is the goal of
the priority model further described in section 3.2.2.

Emergency By setting the emergency flag, applications can indicate that a reservation
should always preempt normal communication. Details of the emergency design
are presented in section 3.2.2.

Lifetime KASYMOSA QoS is a soft-state protocol, where reservations have to be re-
freshed to be kept active. As the target environment is a highly mobile satellite
system, initiators can come and go at any time without prior notice. In order to
keep the network state up-to-date when initiators are not longer able to signal
changes, each reservation carries a lifetime after which it has either been refreshed,
or expires and is removed by the network.

Traffic belonging to a specific flow is identified by the parameters given in the Filter
object. Being an IP-based system, KASYMOSA QoS provides the usual filter parame-
ters, such as source and destination addresses and ports, protocol, and a type-of-service
field. Additionally, the system supports reservation merging for use cases like Multicast
transmissions. An application can specify one of the following Collision Policies:

Reject If the Filter object of a new reservation collides with an existing one (e.g. by
referencing the same addresses without further distinguishing features), the new
reservation is rejected. This is the standard behavior of the system.

Merge Exact If a new reservation carries exactly the same Filter and Parameter objects
as an existing one, the two are merged into a single reservation. This collision policy
allows the system to handle multicast applications without reserving additional
upstream resources. The point of attachment to the multicast distribution tree for
a reservation can simply merge the incoming request with the already existing tree
and terminate the reservation process.

3.2.2. Priority model
Designing a priority model can be approached from two different perspectives: either
priorities are viewed as simple indications of the user preference and may be weighed
against each other in an overall solution, or they follow a more rigid model, where higher
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priorities always take precedence over lower ones. The former approach offers the system
much more room for optimization when calculating a resource allocation, while the latter
allows modeling services, such as emergency calls, that always should preempt normal
communication.

KASYMOSA QoS’s priority model is a hybrid of those two approaches. Using the
Emergency flag of the Parameter object effectively divides the traffic into two classes:
an emergency class, which always preempts the other traffic, and a non-emergency class,
which can be preempted where necessary. Within those classes, the system supports
a simple preference model with the Priority field. Applications can use this value to
indicate their preferred solution (e.g. when choosing from multiple alternatives of a
reservation). This enables the support for non-preemtable traffic, while still allowing a
degree of freedom for reservations with more relaxed requirements.

3.2.3. Reservation state
A reservation in the system can have one of two principal states: Online, meaning that
the required amount of transmission resources have been allocated at a node and data
transport can take place, or Offline, i.e. no guaranteed transmission is possible.

Implementing and extending MoSaKa’s path suspension mechanism, most offline reser-
vations are actually suspended (i.e. temporarily not served due to limited resources).
Whereas its predecessor distinguished between two suspension states (local and remote)
and treated them differently, KASYMOSA QoS introduces a third (blocked) to handle
relations correctly.

Local This state denotes that a reservation was suspended due to locally insufficient
transmission resources. The system will try to re-acquire the necessary resources
and serve the reservation again.

Remote Remotely suspended reservations are offline due to a restriction imposed on
them from outside the control of a network node. The QoS system neither tries to
acquire resources for these reservations, nor considers them as viable candidates
for the resource optimization process, until the restriction is lifted.

Blocked KASYMOSA QoS introduces an additional suspended state for reservations
blocked by a relation. Assuming, for example, two reservations excluding each
other, the system will have to disable one of them, to satisfy all relation require-
ments (see section 3.3 for details on the relation model). A router will not acquire
resources for a blocked reservation (because said resources would be wasted any-
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way), but will consider it as a potential candidate for fulfilling relations in the
resource optimization process.

The full reservation state machine including all transitions is given in appendix A.

3.3. Relations
Relations between reservations are the core idea of this work. The following section
introduces a language to model path relations in a flexible way, and uses it to model
real-life relations as examples.

3.3.1. Relation Modeling
A relation is a function r : Bk → B, expressing an invariant about the states of a subset
of the reservation set Q. If a relation evaluates to 0, this indicates that the current
state of the subset does not conform to the expectations set by the requester. If any
reservation in the subset has resources assigned, they are therefore wasted, as they cannot
be used as intended, due to application constraints. The term “application constraint”
is deliberately used loosely here. The system should not limit the type of constraint to a
predefined set of use cases, but rather support novel and, so far, unforeseen applications.

The relation language has to fulfill two requirements:

1. The language should be capable of expressing arbitrary mappings of allocations to
a truth value. Supporting only a predetermined set of mappings would limit the
system’s capability to operate in a wide variety of use cases.

2. The language should provide enough expressive power to model the specific use
cases found in QoS relations succinctly. Research into possible use cases of the
system, as presented in section 3.3.2, showed several recurrent model patterns.
The system should be able to express those patterns in a concise manner, without
compromising generality.

3.3.1.1. Truth tables

A standard tool for representing an arbitrary mapping from an n-tuple of binary values
to a single truth value, is a truth table as presented in table 3.1a. Simply listing every
possible combination of reservation states on the left side and their respective validity

aThe table presents a shorthand form, where multiple relations share the same left-hand side of the
table. Each column on the right-hand side can be viewed as an independent table.
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sn−1 … s0 rm … r0

0 … 0 r0
m … r0

0...
...

...
...

...
...

1 … 1 r2n−1

m … r2n−1

0

Table 3.1.: A truth table mapping reservation states si to validity values rk
j

values rk
j under each given relation r j on the right, enables the requesting application to

model any kind of path relation required.
In such a system, each relation could be represented as a single tuple of bits by

interpreting the respective column in the truth table as a binary number. That approach,
however, has two drawbacks:

1. Each relation is only concerned with a subset of all the reservation states. However,
in order to correctly represent the respective column in the truth table, the relation
would need information about every reservation in a node, even the ones it does
not constrain in any way. The correct representation would also need to change as
the reservation set Q changes from node to node (inserting and removing columns
on the left side of the table).

2. Even for a moderate number of reservations, the tuple representing a relation
becomes excessively large. If n= |Q| is the number of reservations in a node, then
the length of the bit string of each relation becomes 2n. This is especially an issue
for sparsely populated relations only referring to a very small subset of Q.

Both issues can be remedied by representing relations as bit strings relative to their
related reservations set Fr . Each bit string effectively represents the right-hand side of
a truth table with only the reservations in Fr as inputs. Changes outside the related
reservations set will not influence the evaluation of the relation and therefore do not
need to be modeled.

3.3.1.2. Boolean expressions

Representing relations as a truth table fulfills the generality requirement, but fails the
conciseness criterion. From the modeling point of view, developers might describe paths
as being dependent on, or excluding on another, instead of consciously enumerating all
possible combinations as required by a truth table. Describing a relation using Boolean
expressions is therefore a much better match between the protocol world and its model
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counterpart. As each function described by a truth table can equally be expressed in a
Boolean formula – e.g. by forming it into a Canonical Disjunctive Normal Form (CDNF)
– the generality of the approach is not lost.

A Boolean algebra for modeling relations consists of the following elements:

1. The state variables si as input variables

2. The result values of relations ri as output variables

3. The basic operations ∧ (Boolean AND), ∨ (Boolean OR), ¬ (Negation)

4. The derived operations → (implication), ↔ (Equivalence), and ⊕ (Antivalence,
Exclusive OR)

The usual semantics and rules for operations in a Boolean algebra apply and are not
further described here.

3.3.1.3. Propositional formulas

While researching the applicability of Boolean expressions to model specific protocol
use cases, a limit in their expressiveness continued to show up: the operations of the
algebra are well suited to describe relations between any two reservations, but become
cumbersome to use in cases where more than a pair of paths is involved. The specific
nature of the QoS system often requires modeling not only exact relations (e.g. “p1
and p2 depend on each other”), but rather more general propositions about resource
allocations (e.g. “p1 depends on any two of (p2, p3 or p4)”, see section 3.3.2 for examples).
While Boolean expressions are able to model such cases, the result is akin to enumerating
all possible combinations again.

In order to simplify the modeling of some common structures, the Boolean expressions
are extended into propositional formulas. These not only contain state variables as
inputs, but also more general propositions about the partial resource allocation dri

linked
to a relation ri.

Propositions can be formed from the following elements:

1. the partial resource allocation variable dri

2. an operator (bk, . . . , b0), bi ∈ B for defining a k-tuple of Boolean values. Boolean
values are either state variables si or propositional formulas as defined in this
section.

3. the operator |v| : Bk→ N, representing the number of elements of a given tuple v
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4. the operators |v|1 : Bk → N and |v|0 : Bk → N returning the number of 1 or 0
(respectively) in a given tuple v

5. relational operators =,<,>,≤,≥: N → B with their usual semantics over natural
numbers

6. natural numbers n ∈ N
Propositions over integer operands always result in a truth value (i.e. necessarily

contain at least one of the relational operators).
This extended definition of a relation modeling language does not compromise the

generality of the approach. Propositions do not diminish the expressiveness of Boolean
expressions, but rather extend it in some common modeling cases as presented in sec-
tion 3.3.2. Each Boolean expression is, by definition, also a propositional formula with-
out any of the additional propositions defined above. Transitively, if any relation can
be represented using Boolean expressions, it can also be expressed as a propositional
formula. Any proposition, as defined above, can equally be represented as a Boolean
expression, by simply enumerating all “true”-cases of the proposition and expressing
them as a CDNF. As propositions are formed over a finite number of input variables,
they can only represent a finite number of possible states and their respective truth val-
ues, making an enumeration possible. Therefore, Boolean expressions and propositional
formulas, as defined above, are equivalent in their modeling power.

3.3.2. Examples
In order to give clearer insight into the intended use of the relation model, this section
presents some common patterns that emerged during the design phase of this work.
Each relation is described informally and defined using the formal language presented
in section 3.3.1.

Independent A set of reservations is independent of each other if its members bear no
relationship other than by chance being in the request set at the same point time.
A formal representation – as far as it can be considered useful – of this relation is:

r = 0

Mutually dependent Reservations that are mutually dependent cannot exist without
one another. An example would be the two flows of an ARQ-protocol like TCP. If
either one breaks, the whole connection stops working.
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For a set of reservations Fr ⊆Q this relation r is modeled as:

(|dr |1 = |dr |)∨ (|dr |1 = 0)

A mutual dependency is fulfilled if either all of the related reservations have re-
sources assigned to them, or none has (by virtue of not wasting resources in this
case).

Dependent A dependent flow cannot exist without another, but the dependency is not
mutual. If, for example, a video streaming source sends an MPEG-4 [MPEG4]
video stream with I- and P-frames on different network flows (e.g. marked by an
appropriate option header), then the P-frame stream will depend on the I-frame
stream, as the former cannot be decoded without the latter due to the inherent
dependency relation of the frame types. The I-frame stream on the other hand
can very well be used without access to the P-frames. This idea and its impact
on QoS is developed more in detail as Scalable Video Coding in Annex G of the
MPEG-4/AVC standard [AVC].
Formally, the dependency of a reservation pi on p j is modeled as:

si → s j

Exclusive Reservations are exclusive, if only one of the set can be active at any given
time. This relation can be used to model different alternative parameter sets of
the same reservation, e.g. different output profiles of a video source, resulting in
different data rates on the link.
The exclusive relation r is formally defined as

|dr |1 ≤ 1

At least n The at least n relationship indicates that an arbitrary subset of the given
reservations can be active to fulfill this request, as long as at least n are enabled. A
typical example would be the multiple parallel connections opened by web browsers
for performance reasons. While the browser can certainly operate with just one
connection, multiple connections increase performance and lower the probability
of blocking on slow resources.
The formal definition of this relation r is:

|dr |1 ≥ n
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3.3.3. Model interactions
Relations in KASYMOSA QoS should be orthogonal to the reservations they constrain.
However, depending on the concrete model, there are interactions with specific param-
eters which have to be taken into consideration when expressing application require-
ments. The interactions described here are specific to the parameter model presented in
section 3.2.1. Others may exist, but are not further explored in this work.

3.3.3.1. Reservation priorities

Dependency relations may lead to a discrepancy between the statedb and effectivec pri-
orities of reservations. If a relation introduces a dependency pi → p j (i.e. pi depends on
p j) and φ j < φi (i.e. p j has a lower stated priority than pi) their effective priorities will
be identical.

Assuming an ordering of the reservations with φi > φ j under a value function for the
resource allocation, as presented in section 3.4.3, there are three possible cases regarding
the resulting resource allocation:

1. The value of the solution including pi and p j is greater than the value including
all intermediate reservations pk with φi ≥ φk > φ j. As this higher value can only
be achieved by including p j as a prerequisite for pi, the latter “skips” all higher
prioritized reservations pk, effectively taking on the priority of pi.

2. The solution containing at least one pk with φi ≥ φk > φ j is better than the
one including pi and p j. In this case, pi is “held back” by its dependency on p j,
effectively lowering its priority to the one of p j.

3. The value of a solution including all pk with φi ≥ φk > φ j and p j itself is higher
than the value of the solution including pi, p j and a subset of all reservations in
between. As p j → pi, but not the other way around, p j is even assigned resources
before pi, effectively leading to a priority inversion for the two reservations. In
contrast to cases 1 and 2, this case does not apply to reservations in a mutually
dependent relationship.

All cases assume a resource limited situation triggering the optimization process in
the first place. For cases 1 and 2, pi and p j have the same effective priority, while in case
3, p j takes on a higher priority than its dependent relation. In any case, this situation

bThe priority as stated in the reservation parameters.
cThe order in which resources are assigned to the reservation.
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could be considered a model error on the side of the relation, as a low priority reservation
is a prerequisite for scheduling a high priority one.

3.3.3.2. Lifetime

Similar to the priority parameter, a reservation’s lifetime can be influenced by its de-
pendencies. Again, if a path with a lower lifetime is a prerequisite for one with greater
longevity, the latter may be effectively limited to the shorter lifetime. The exact be-
havior depends on the handling of expiring or deleted reservations within a relation. A
system could decide to mark said reservations as permanently disabled, causing their
dependents to fail early as well. The system could also decide to expire and remove the
containing relation along with the reservation. In this case, the lifetime of the dependent
reservation would be unaffected, as the dependency relation is removed. Whether this
behavior is desirable, depends on the specific use case in question. Application designers
again should take into account that a dependency of a path with a longer lifetime on
one with a shorter lifetime could be considered a flaw in their relation model.

3.4. Resource allocation
Key to successful operation of a reservation-based QoS system is an efficient resource
allocation. Clients reserve resources because their use case is not suited for the best-effort
service offered by standard IP networks. Resources, in this respect, are most commonly
physical layer transmission resources for which the different reservations compete.

In such a model, each reservation has an associated cost in terms of physical layer
resources. Depending on the actual reserved bandwidth, tolerable error rates, delay
requirements and the current underlying channel properties, resource demand may vary
considerably. Section 3.4.4 describes the relationship between reservation parameters
and their associated physical resource requirements in more detail.

Not all reservations in the system are created equal. Some are of higher importance,
where others are more expendable. The reservations therefore have different value to
the end-users and, in turn, the system. A resource allocation, especially in a constrained
environment, should reflect these priorities. Section 3.4.3 discusses multiple alternative
value functions and their respective priority model.

Finding the most valuable resource allocation under a given resource constraint is an
instance of the Knapsack problem. Section 3.4.2 introduces the problem for the purpose
of this work and describes its applicability to a resource allocation system.
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3.4.1. Requirements
The resource allocation process should achieve two goals:

Maximize user satisfaction Users want to transmit data through the system. They are
most satisfied if they have as many high value paths activated as possible (up to
the point where all requests are fulfilled).

Waste no resources The system should not assign already constrained resources to
reservations that cannot use them due to relation violations. As with any sys-
tem trying to allocate specific resource blocks from a given overall capacity, there
will be some waste due to an imperfect fit. However, this is not considered waste
in the sense of deliberately assigning unusable resource blocks. Such “left-over” ca-
pacity might be assigned to the transport of best-effort data, which is most likely
present in the system anyway.

3.4.2. The Knapsack Problem
A popular analogy of the Knapsack problemd is a thief with a backpack burgling a
house. The backpack can only carry a limited weight (the resource limit). The thief
looks around the house and sees items of different weight and value (their respective
resource requirements and values). Obviously the thief wants to maximize the profit of
the stolen goods, while still being able to carry them with his knapsack. This specific
instance of the Knapsack problem is called the 0-1 knapsack (because each item can be
in the knapsack 0 or 1 times only. No item can be copied.) It is formally expressed as

Maximize
n∑

i=1

vi x i provided, that
n∑

i=1

wi x i ≤W

Here vi is the benefit and wi the associated weight/cost of an item i . The variable
x i ∈ N is the number of times the item is included in the knapsacke. The value W is the
capacity of the knapsack, i.e. the upper resource limit.

Adapting the general Knapsack problem to the resource allocation, as presented
here, requires some changes in the setup. Network routers typically have more than
two network interfaces. Instead of having a single common resource limit, the router
has a constraint for each individual interface. Additionally, reservations can only be

dSee [KPP04] for a thorough introduction of is problem.
eFor the 0-1 knapsack x i ∈ {0, 1}. Other variations like the bounded or unbounded knapsack exist, but

are of no significance to the resource allocation problem
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served by a specific interface n ∈ N determined by the current routing state. This
problem is a variant of the Multiple Knapsack Problem with Assignment Restrictions.
Dawande et.al. [Daw+00] showed, that this problem is NP-hard.

Adding relations to the problem turns it into its final form:

Maximize
∑
i∈I

visi

provided, that
∑
n∈N

wisi ≤Wn

and ∀r ∈ R : r = 1

(3.1)

where Wn is the maximum gross capacity of the network interface n. The best resource
allocation maximizes the overall value, while not exceeding the available resources on
any interface and fulfilling all relations.

3.4.2.1. Satisfiability of all relations

At first, requiring all relations to be satisfied for a feasible solution seems severely limiting
to the general applicability of the system. After all, relations are generic propositional
formulas, which, in the general case, are not necessarily satisfiable and whose satisfiability
cannot be efficiently checked. This apparent limitation is not relevant for the task at
hand for two reasons:

Non-satisfiable relations have no valid use case. A relation which is not satisfiable, i.e.
which does not have valid solutions, does not offer additional information to the
resource allocation process. The sole purpose of modeling relations is to divide the
allocation space into two sets: valid allocations, which do not waste any resources
(and therefore should be preferred) and invalid ones, that do. If a relation is not
satisfiable, this separation is impossible. All possible resource allocations would
be in the same, invalid, class.

The null-allocation is always feasible. The goal of the relation system is to avoid wast-
ing resources by not allocating them to reservations that cannot be used due to
their intrinsic dependencies. Under this model, the allocation not assigning any
resources at all, is always valid (if not necessarily the best one). The system can
therefore assume that for each relation an allocation ai = (0, . . . , 0) will produce a
valid result. This in turn implies that the satisfiability requirement in equation 3.1
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is always fulfilled. Due to the maximization of the target function, the best alloca-
tion under the current constraints will most likely enable some reservationsf.

3.4.3. The value function
The goal of the optimization is to maximize the overall quality – expressed as a scalar
value – of the resource allocation under the given constraints. This value is the sum of
the individual reservation values. As those values are defined to be positive, maximizing
the sum necessarily means selecting as many of the most valuable reservations as possi-
ble. The individual reservation values should therefore accurately reflect the initiator’s
preferences regarding the availability of each path.

3.4.3.1. Priority values

The priority φi of a path pi represents the preference of the initiator for specific paths
over others. It determines the intrinsic benefit vi of the reservation from the point
of view of the value function. Priorities are signaled as integer values in the range
[1,φmax]. Depending on the use case, this range can be mapped to the intrinsic value
range [vmin, vmax] in different ways.

Linear transfer function A simple linear priority model could use the signaled priority
value as is.

vi = φi

Under such a model, a reservation p1 with a priority high φ1 could be matched value-wise
by n low-priority reservations p2...n+1 with φ2...n+1 = φ1/n (a preemption ratio of 1/n). This
gives the end-system the option to finely balance how many low-priority paths preempt
one with a higher priority, i.e. at which point a certain reservation is no longer “worth”
preempting a whole set of others.

The drawback of this approach is a non-constant preemption ratio over the input range.
A reservation with φ = 2 has a preemption ratio of 2 over one with φ = 1. However,
to get the same preemption ratio over a reservation with φ = 20, a reservation already
needs a priority of φ = 40. In the limited range [1,φmax], this means that against every
priority beyond φmax/k the preemption ratio is less than k. Whether this limitation is an
issue, depends on the actual use case and is outside the scope of this work.

fInsisting on the validity of the null-allocation may seem like a technicality. However, it does enable
the direct transformation into an Integer Linear Program as presented in section 3.4.5.3.
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Exponential transfer function Keeping a constant preemption ratio α throughout the
input range requires an exponential transfer function:

vi = α
φi

Under this model, α reservations of priority φi are required to match one reservation of
priority φ j = φi + 1. Depending on the selection of the base α, the individual priority
classes can be moved further apart or brought closer together.

Strict priority model A special case of the exponential model is a strict priority system,
where a higher priority always preempts lower classes, no matter how many of those are
on the line. To achieve this the base of the transfer function needs to be equal to the
total number of reservations known to the system

α= |Q|
The transfer function therefore becomes

vi = |Q|φi

Considering the generic case of two input values φm and φn = φm + 1, the transfer
function should never cause a path of the latter priority to be preempted by any number
of paths of the former. According to the transfer function given, the two input values
result in the following benefit:

vm = |Q|φm (3.2)

vn = |Q|φn
= |Q|φm+1 = |Q| · |Q|φm (3.3)

The closest a lower class could come to preempting a higher class under such a regime
would be a situation where all but one elements of Q are of lower priority.

In this case the combined value of all low-priority reservations is

v∗ =
∑
k∈I

φk=φm

φk = (|Q| − 1) · |Q|φm (3.4)

From equations 3.3 and 3.4 follows, that vn > v∗, i.e. a set of paths with priority φm

could never out-compete even a single reservation of priority φn.
Using the exponential transfer function does have a significant practical drawback:

depending on the base and the range of possible priorities, the resulting benefit values
become very large. Regarding the strict priority model, the base is already large to
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start with (the total number of paths known to a node) and may be raised to quite
a significant power. Common computing hardware cannot handle numbers that large
efficiently. Care should therefore be taken when selecting this transfer function. If the
number of different priorities is low, it may be more efficient to handle each class on its
own, running the optimization algorithm multiple times. Specifically the non-preemtable
use case is much more efficiently solved by optimizing twice.

3.4.3.2. KASYMOSA QoS’s transfer function

The selection of the actual transfer function depends on the intended use case. If the
priority indicates a mere preference without any actual guarantees, a linear function
might be appropriate. For more strict use cases, an exponential transfer function with
a sufficiently high base provides better separation of different priority classes. However,
the decision is system-wide: mixing different transfer functions in one network leads to
inconsistent interpretations of the reservation priority values and therefore has to be
avoided.

As described in section 3.2.2, KASYMOSA QoS employs a simple preference model
with respect to its priority values. A linear transfer function, as presented above, is
used to calculate the intrinsic values of reservations. Whether or not the selection of the
transfer function has a significant influence on the performance of the system (e.g. by
limiting the degrees of freedom for the optimization algorithm) is a question beyond the
work presented here.

3.4.4. A cost function
Where the value function defines preferences for different solutions in the resource allo-
cation process, the cost function assesses their viability. If the total required capacity
of a solutions exceeds the available, it simply cannot be implemented, no matter how
beneficial it would be.

The cost function calculates the amount of transmission resource units (e.g. bit/s) used
for a specific reservation. As the capacity of a link is given in the same units, simply
summing up the individual costs of all enabled paths results in the overall cost of a
solutiong. For viable solutions, this value is less or equal to the current capacity of the
link in question:

w=
∑
i∈I

siwi

gThis model assumes, that any overhead for transporting multiple transmissions over the same link (e.g.
protocol headers to distinguish individual flows), is included in the individual cost of each reservation.
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Calculating the individual path cost wi is slightly more involved. Initiators request the
net data rate ci needed to fulfill their service. Depending on the setup, this may already
include the necessary overhead for packetizing the data stream and adding the necessary
headers down to the IP layer. Beyond this, initiators cannot make useful assumptions
about the actual transmission capacity needed on a specific link. Where wired networks
like Ethernet only add a slight, fixed overhead in form of the frame headers to each
packet, wireless technologies might have a much more complex relationship between net
and gross data rate of a path.

In the KASYMOSA project, the main focus is on a QoS-capable satellite link, an
example of a very complex cost function. Depending on the current link quality and
the QoS requirements of the path, a reservation might need vastly different transmis-
sion resources to guarantee the same net QoS parameters at different points in time.
Loss-sensitive traffic like TCP could be transmitted using much more redundancy at the
physical layer, whereas audio stream would need to be less protected. The former there-
fore needs more gross capacity than the latter to transmit the same net rate. The correct
cost calculation can only be done by tight cross-layer integration between network, MAC
and physical layers.

3.4.4.1. Ethernet

In contrast to the value function, on which all network nodes have to agree in order
to achieve a predictable system behavior, the cost function is local to a specific link.
KASYMOSA QoS (in the context of the KASYMOSA project) implements two cost
functions: one for Ethernet links and one for the satellite link. The simpler Ethernet
function adds an estimated overhead of 3% to each reservation:

wi = ci · 1.03

The factor is a compromise between having a more complex QoS model and over-
estimating resource usage for many of the paths. It is based on the assumption that
the payload of an average Ethernet packet will be half the maximum possible payload of
1500 bytes. There will be transmissions with larger payload sizes (e.g. file transfers via
TCP), as well as smaller ones (e.g. voice calls, which focus on delay). The overhead of
the Ethernet header, including the preamble, on such an average frame is approximately
3%. This model will overestimate the overhead for large frames and underestimate for
small frame sizes.

A more accurate alternative to this simple overhead estimation requires a more com-
plex QoS model which includes at least the average packet size, along with the data rate,
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to allow for a more precise overhead calculation. The system could try to infer the neces-
sary parameters from the type of traffic reserved, e.g. protocol, well-known ports, total
data rate or even observe the actual traffic to adapt over time. As the Ethernet part of
any satellite system is most likely not the bottleneck of a path, estimation errors are not
expected to influence the system performance. Better overhead estimation algorithms
are therefore left to future research.

3.4.4.2. Satellite

The satellite cost function is slightly more involved than simply adding a fixed percentage
of overhead. The lower layers have different possible configurations for different service
types, delay and loss requirements, and link conditions. A certain robustness against en-
vironmental influences may, for example, be achieved by transmitting a more redundant
signal over a shorter time or spreading out a less redundant signal over a longer period.
The former is more susceptible to bursts of decoding errors (e.g. signal distortion by
passing a tree) and therefore may need more redundant information to still be able to
recover. The latter spreads out the transmission over a longer period, diminishing the
effect of short interruptions on the overall transmission. It does, however, pay the price
of incurring a higher delay, something that might not be desirable for specific types of
traffic. Due to the increased redundancy in the first approach, a transmission needs to
trade increased resource usage for a lower transmission delay, a fact that is reflected in
the cost function.

At each specific point in time in KASYMOSA QoS’s operation, the relation between
net and gross data rate, i.e. net data rate and required transmission resources can be
expressed as the code rate fc(p) = k/n= net rate/gross rate. This ratio depends on the specific
QoS requirements, as well as the current link situation, and is known to the physical
layer. The QoS system can request this information from the lower layer and calculate
the resource requirements of each reservation p as:

wi =
ci

fc(pi)

Implementing the cost function on a satellite terminal (or any other system with a vari-
able code rate) is therefore only possible in close cooperation with the physical layer.
Information about the current link state and the resulting modulation and coding deci-
sions needs to be relayed to the cost function in order to correctly optimize the resource
allocation.
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3.4.5. An optimization algorithm
Based on the value and cost functions presented above, the system has to perform two
different optimization tasks. First of all, a router has to calculate the optimal resource
allocation in case of a capacity restriction. Crucially it also has to calculate the “best
case” solution, assuming no limits at all.

3.4.5.1. Best case allocation

In a QoS-system without relations the best case allocation is simple to calculate: it is the
sum of all requested paths. However, the introduction of relations changes things. Con-
sider the case of an adaptive video streaming application with different output profiles:
such a system might offer a number of different stream qualities (resolutions, compression
qualities etc.), depending on the current available data rate. In terms of KASYMOSA
QoS’s modeling this could be expressed as an Exclusive relation over different reserva-
tions with decreasing priority. At any point in time, only one of the reservations would
be online, with preference given to the high-quality (and therefore high-priority) ones.
The best case allocation under such a regime is no longer simply the sum of all paths
in the relation, but the one with the highest priority. More complicated relations might
yield even more complex solutions.

3.4.5.2. Resource adaptation

When adapting to a limited transmission capacity, the optimization process effectively
has simply one more constraint to follow. Section 3.4.5.3 will show that both the resource
limit and the relation information can be modeled as invariants in an Integer Linear
Program. Existing algorithms and their implementations efficiently solve the problem
sizes presented in this work, making the use of the system feasible.

The resource adaptation process has to incorporate the emergency preemption mech-
anism presented in section 3.2.1. To do so, the optimization algorithm is run twice:
first, with only the paths having the Emergency-flag set, leaving Wrem = W −∑i∈I siwi
as the remaining capacity. The second step will only consider non-emergency paths for
optimization under the Wrem constraint. This approach eliminates the need for a more
complex priority transfer function that guarantees isolation within a common value
space.
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3.4.5.3. Integer Linear Programming

Integer Linear Programming problems are optimization problems where an objective
function has to be either maximized or minimized under some given constraints. Both
the objective and the constraint functions are linear. In the special case of an Integer
Linear Program, the constituent variables are restricted to be integers. More specifically,
for ILPs solving the 0-1-Knapsack problem, they are binary.

By transforming the resource allocation problem with its relation constraints into an
ILP, a huge body of existing algorithm research and implementation becomes accessible.
Existing solvers like COIN-OR CBC [COIN] implement well researched algorithms that
solve the optimization problem, albeit being NP-hard, in acceptable time for the problem
sizes at hand.

Mapping the resource allocation problem to an ILP is a straightforward processh:

Variables Every state variable si is also a variable in the optimization problem. When
mapping the relation constraints, additional, non-solution helper variables can be created.
While these are normal variables from the point of view of the ILP solver, they are not
part of the final resource allocation.

Objective function The objective function can be directly expressed as an ILP objective
function:

Maximize
∑
i∈I

vi · si

Capacity constraints The capacity constraints can be directly expressed as ILP con-
straints as well:

For every interface n ∈ N ensure, that
∑
i∈IN

wi · si ≤Wn

where Wn is the specific gross capacity of the interface n.

Relation constraints The propositions representing the relation constraints are created
bottom-up, based on their abstract syntax tree. Integer helper variables are introduced,
where necessary.

hFor clarity reasons this work deviates from the usual matrix and vector notation of ILPs and uses
explicit summation instead. The two notations are equivalent, but the one used here is more aligned
with the standard expression of a Knapsack problem used so far
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Conjunction The conjunction of a set V of variables can be expressed as:

0≤∑
si∈V

si − |V | · y ≤ |V | − 1

The binary variable y holds the result of the conjunction.

Disjunction The logical OR of a set V of variables can similarly be expressed as:

0≤ |V | · y −∑
si∈V

si ≤ |V | − 1

Again, the value of the binary variable y is the result of the disjunction.

Negation The negation of a variable si is transformed to an equality constraint:

y = 1− si

Expressing the counting operators based on the definitions given before, is a straight-
forward process:

Count-One |d|1 The Count-One operator for a tuple d becomes a simple sum:

y =
∑
si∈d

si

Count-Zero |d|0 The Count-Zero operator on a tuple d is expressed by counting the
ones of the negated tuple:

y =
∑
si∈d

1− si

The cardinality operator does not have an equivalent as the ILP. While it could be
transformed as the sum of Count-One and Count-Zero on the same tuple, the tuple size
would actually be a known constant and be used directly, when constructing the ILP
representation.

The comparison operators used in the propositional formulas are directly supported
by the ILP solver and need no further transformationi.

iFormally, an ILP only contains “≤” constraints. However, since the other operators can easily be
expressed in terms of this inequality, most modelers, including the COIN-OR front-end used in this
work, automatically transform them where necessary.
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Building up the full relation from these individual transformations is merely a matter
of following the abstract syntax tree to its root, reusing helper variables where necessary.
The top-most constraint representing the full relation r is simply restricted to value
greater 0, ensuring that the solution is only valid if the constraint holds.

1≤ r

In a similar fashion, the state variable for reservation pi that is not eligible for optimiza-
tion (i.e. a remotely suspended reservation), is restricted to at most 0, ensuring that no
solution, which requires pi to be online, is feasible.

si ≤ 0

Based on the transformed representation of the optimization problem, an ILP solver is
then able to find an optimal assignment to the contained state variables si.

See appendix B for a detailed example of a transformation.
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The very nature of a network QoS system is to have a distributed architecture. State
information is scattered over multiple nodes, each of which can be a source for events
pertaining to said state. This necessitates a synchronization protocol along with the
corresponding transport system.

KASYMOSA QoS’s use case imposes the following requirements on the communication
subsystem:

Minimal number of interactions One of the key requirements of the system is a short
convergence time over low-bandwidth, long-delay links. As with the QoS model in
chapter 3, the basic assumption is that round-trips (and thereby protocol interac-
tions) are expensive and are to be minimized.

Network-originated signaling Operating in a highly volatile environment leads to a sig-
nificant amount of QoS-related events originating in the network and being signaled
to path endpoints.

Support for multicast reservations One of the use cases, stemming from the KASY-
MOSA project, requires the signaling of multicast reservations. The signaling sub-
system needs to support the reservation and management of multicast distribution
trees.

Robustness A mobile communication environment is always fraught with the risk of los-
ing packets. The signaling subsystem must provide robustness against packet loss,
duplication and corruption. This includes a protection against stalling independent
signaling processes on a lost packet in another transmission.

4.1. Protocol primitives
Chapter 3 describes the system’s model objects that represent network’s state. Accom-
panying those is a set of protocol actions to change said state. The protocol supports
the following primitives:
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Reserve Using the Reserve action, an initiator requests the creation of a set of QoS paths
from the network. The accompanying reservation and relation objects describe the
new state as desired by the initiator. Reservation requests are subject to the
network’s admission control mechanism. After such a request has been granted,
the appropriate QoS is guaranteed until further notice. Section 4.1.1 describes the
reservation process in more detail.

Suspend/Resume KASYMOSA QoS strives to minimize protocol interactions by sus-
pending and resuming reservations in the same way as first demonstrated in the
MoSaKa system [Hei+10], KASYMOSA QoS strives to minimize protocol interac-
tions by being able to suspend and later resume reservations. See section 4.1.2 for
details on the mechanism.

Refresh In a soft-state system like KASYMOSA QoS, reservations have to be continually
renewed or they expire. This approach ensures an eventually consistent network
state without lingering reservations, even in the case of a sudden disappearance of
an initiator. The main refresh mechanism of the system is implicit, by observing the
usage of the data path, as described in section 4.1.3. To support reservations with
only intermittent traffic, the protocol also includes an explicit Refresh primitive to
be sent by the initiator in case of longer intentional transmission pauses on a path.
Both mechanisms work by resetting the life-timer of their respective reservations,
preventing them from expiring.

Delete Even though KASYMOSA QoS is a soft-state system, which could just let reser-
vations expire by no longer refreshing them, the protocol still supports an explicit
Delete action. The soft-state timeout is always a trade-off between the refresh
overhead and the convergence time in case of the end-of-life of a reservation. In-
troducing an explicit delete action allows the initiator to choose longer expiration
timeouts, while still being able to tear down a reservation on short notice. Sec-
tion 4.1.4 presents a detailed discussion of the intricacies of deleting reservations
and their relations.

4.1.1. Reservation
The Reservation action requests the creation of new state in the network. The action
is accompanied by a set of reservations and relations to be added to the respective sets
in a node. Upon reception of such a request, a node will try to allocate the necessary
resources locally and, if necessary, further downstream. It will then signal the results
back to its upstream.
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KASYMOSA QoS’s concept of relations as well as the ability to suspend and resume
paths influences the handling of reservation requests. Whereas the classic admission
control process takes an accept/reject decision, KASYMOSA QoS’s is slightly more
nuanced. If a reservation is currently blocked by a relation, it is suspended, rather than
rejected. This indicates to the initiator that the system took note of a reservation, but is
not currently serving it. A rejection on the other hand, would signify a final decision on
the inability to serve said request. The latter would make it impossible for an initiator,
to request reservations in an exclusionary relationship, as only one of those would not
be rejected.

In case of a resource shortage, the system handles suspension and rejection depend-
ing on the current state of a reservation. Reservations that were already admitted, but
cannot be guaranteed any longer are suspended. New reservations that have not been
admitted yet and are not currently blocked by a relation (in which case no resources
are requested for them anyway) are rejected. The decision on which reservations have
resources allocated is subject to the value model presented in section 3.4.3. By imple-
menting suspension for existing paths and rejection for new paths, the system puts a
slight focus on stability over fairness. All other things being equal, a new transmission
request will not be served until an existing one is finished. A system focused more
on fairness (i.e. serving more end users equally, instead of providing the best QoS for
admitted transmissions) may take the age of a reservation into account and gradually
diminish its value over time, until new reservations win out.

A reservation always describes the next (as in: outgoing) path segment from a node’s
point of view. Similar to the GIST signaling overlay, KASYMOSA QoS builds QoS
paths as a series of segments with possibly different parameters. The overlay formed
by this approach and how it enables in-network adaptation of reservations, as well as
multicast support, is discussed in more detail in section 4.2.

4.1.2. Suspension/resumption
KASYMOSA QoS takes its Suspend/Resume mechanism to support operation in a highly
volatile environment from the MoSaKa system. In order to minimize the convergence
time in case of environment changes, as well as the signaling effort required for dealing
with transient link degradations, the system actively manages paths which are currently
not served. This frees the initiator from periodically trying to obtain the necessary
resources through the normal reservation process. It indicates that the system regards
the reason for not serving a reservation as temporary, whereas a deletion is a permanent
decision. The mechanism has two main effects:
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• Actively managing the paths on the network side lowers the reaction time to
changes. Whenever the capacity changes, a router can immediately react to this
change by either suspending, or, in particular, resuming paths. Without this mech-
anism, end systems would periodically have to check on the current situation. De-
pending on the check interval, there would be a significant delay in reacquiring a
reservation after a capacity increase.

• By removing the signaling burden from the initiator, the system saves a significant
amount of signaling messages. Instead of having the initiator periodically request
resources, only to fail because the link degradation still persists, the network can
simply send a single message when the issue is resolved. This is especially crucial
in a highly volatile environment, as the initiator would have to use a very short
signaling period to react reasonably quickly to any changes.

In addition to the advantages presented so far, the Suspend/Resume mechanism plays
a crucial role in supporting exclusionary relations between reservations. Assuming, for
example, an initiator wants to signal two different transmission profiles for a video source,
only one of which is used at any given time. Without the path suspension mechanism,
admission control could only reject one of the reservations because it is blocked by the
relation. However, rejecting it would make it impossible for the requester, to distinguish
between a genuine rejection due to insufficient resources and a reservation being blocked
by a relationa.

4.1.3. Implicit refresh
One of the goals of KASYMOSA QoS is the minimization of protocol interactions to
save traffic and speed up convergence. Especially when operating on an overloaded link,
the additional signaling transmissions generated by the refresh mechanism can make
up a significant portion of the overall traffic. As these messages are necessary for the
correct operation of the system – as reservations would otherwise expire – they have
to be transported with a higher priority, effectively preempting real traffic on the link.
This is particularly an issue, as the signaling traffic is very intermittent and can lead
to a situation where the system periodically has to suspend and resume reservations in
order to just transport refresh messages.

To avoid this issue, KASYMOSA QoS implements a implicit refresh approach. This
approach rests on two assumptions:

aObviously the rejection could convey such information using specific status codes for blocked reserva-
tions. However, this would be equivalent to the suspension of a reservation: the accompanying state
would still be kept in the network to be enabled when necessary/possible.
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1. QoS routers can observe the data flow related to a specific reservation. As the
routers holding a reservation are the very ones that are providing the QoS guar-
antees entailed by it, they have to be on the forwarding path for the respective
traffic. Otherwise they would not be able to influence the QoS with their forward-
ing decision.

2. Paths that are used are still needed. If data is still transmitted along a path it
can safely be assumed that this traffic is to be subject to the guarantees initially
requested.

Soft-state approaches mainly serve a simple purpose: remove state in the network,
which cannot be removed by the original requester anymore, due to their inability to send
signals to a certain set of nodes. This can either be because of a sudden disconnection
of the initiator or a change in the routing in the network, which diverts a path via a
different set of routers. In both cases, refreshes from an initiator can also no longer reach
the respective routers, which in turn let the reservations expire after some time.

A major optimization parameter for the soft-state approach is the reservation lifetime.
A shorter lifetime enables quicker reaction to changes in the network, whereas a longer
lifetime lowers the amount of refresh signaling necessary. The implicit refresh approach
is able to alleviate the trade-off issue by eliminating explicit refresh messages altogether.
Resting on the two assumptions given above, KASYMOSA QoS uses the data flow along
a path as an indicator that said path is still needed. It does so by taking each data packet
as a refresh event, resetting the life timer of the appropriate reservation. This way, no
additional resources are needed to indicate the refresh. In the case of route changes or
crashes of the initiator, the data flow stops and the usual lifetime management takes
control.

Topology change detection Expiring inaccessible reservations after a topology change
is only half the issue for continued QoS support. New nodes that have not been part
of the forwarding path before, need to have information about the reservation, in order
to handle traffic appropriately. Using periodic refresh messages, routers can detect un-
known paths and request the necessary information from the initiator. This mechanism
fails with implicit refreshes, as the data traffic is in no way different from a simple, un-
reserved transmission. A new router simply detects an increase in best-effort traffic and
cannot assume anything about this change.

There are two types of topology change relevant to this issue: a change where systems
on the old route (or parts thereof) can still reach the initiator (figure 4.1) and a situation
where this is no longer possible (figure 4.2). Both cases need to be handled slightly
differently by the system.
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Figure 4.1.: A topology change leaving parts of the old route connected.
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Figure 4.2.: A topology change leaving the old route completely disconnected.

The case presented in figure 4.1 can be handled by the normal reservation expiry
mechanism, as implemented by KASYMOSA QoS. After the routing switches from R2
and R4 to R3 and R5, at some point R2 will expire the path segment it still holds. As it
is still able to reach R1 and therefore, by proxy, the initiator I , the system can detect
the route change because of the expiry notification. I or, depending on the actual
implementation of the route change handling process, R1 can then initiate a re-reservation
along the new route, based on the knowledge, that data should still be traveling along
the reserved path.

Figure 4.2 presents a different issue. In this case, the forwarding node itself has gone
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down and can no longer expire the reservation as necessaryb. This case cannot be solved
by passively observing signaling messages that would be sent in the normal course of the
protocol. Instead, there are a few different options, as to how to tackle this situation:

Periodically send explicit refreshes If an initiator sends periodic refreshes along the
path, new routers are able to detect unknown paths and inform the initiator ac-
cordingly. As a drawback, this solution reintroduces extra signaling, in the normal
operation of the network, leading to the problems discussed above. However, de-
pending on the volatility of the network topology, applications could send much
fewer of those signaling messages than necessary for the usual refresh/expiry mech-
anism.

Explicit route change notification If the route change occurs at a QoS router, the
system could explicitly notify the initiator about the change and trigger the re-
reservation process. This is the most flexible solution, but requires additional
active signaling on the part of the network. This also does not solve cases where
the route change occurs at an intermediate router (e.g. when integrating with a
legacy network), which does not have a concept of the signaling requirements.

Received QoS verification Applications monitoring the received QoS (e.g. by monitor-
ing parameters like throughput, packet error rates and the like) could be able to
detect relevant changes in the transmission quality and trigger a topology change
detection. This approach would not detect and try to fix the path interruption
until it becomes relevant. As long as a best-effort forwarding in the new intermedi-
ate nodes still meets the expected parameters, no path repair would be triggered.
While this would limit protocol interactions to situations where they are strictly
necessary, it does incur an extended reaction time in the event of a QoS violation.
As the end system would have to monitor the received parameters for some time
to get statistically valid estimated values and then trigger the process of rebuilding
the path, the required QoS will be violated for an extended period. As an added
detriment, the signaling necessary for repairing the path will occur in a situation
where the network is already congested (hence the violation of the QoS parameters
in the first place).

KASYMOSA QoS does not implement any of the presented approaches. As it focuses
on mobile satellite communication, where route changes to a different satellite link are

bThis case is representative for all cases where information about an expiry can not get through to the
initiator. This could also be caused by a network split, where the relevant routers are still working,
but cannot send signaling messages.
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uncommon or even impossible, the path repair mechanism is currently outside the scope
of the system.

4.1.4. Deletion
In a soft-state system like KASYMOSA QoS, unused reservations will expire eventually.
However, this mechanism is intended as a fail-safe fallback in case of breaking changes
in the network. Relying on it for normal path tear-down would imply wasted resources
for at least one path lifetime, as the earliest a router could expire a reservation would
be, by definition, after that period of inactivity.

Supporting explicit path tear-down solves this issue. When an initiator no longer
requires a specific reservation, it sends out a Delete request. Routers that receive such
a request can free any assigned transmission resources.

Introducing the concept of relations into the QoS model affects the system’s ability
to delete reservations. Whereas independent reservations can always be deleted without
any regard for their environment, things are slightly more complicated if a reservation is
part of a relation. Deleting such a reservation influences the state of others in the same
relation to some extent. Depending on the exact behavior of the system, these could
become impossible to serve. There are four possible approaches to this issue:

Refuse removal of the reservation Whenever a reservation is contained in an existing
relation that is not to be removed along with it, the system can refuse the removal
of said reservation. The reason for this refusal is indicated to the initiator, so that
appropriate action can be taken.
This approach considers the removal of a bound reservation as a modeling error.
It therefore errs on the safe side and refuses to carry out such a transaction. While
this ensures that no initiator removes any reservation accidentally, it increases the
number of protocol interactions in this case.

Remove the reservation from any relations it might be part of A deleted reservation
no longer exists for the system. It therefore cannot conceivably be part of any
relation. This approach assumes that whatever relation two paths had is no longer
intended by the initiator. Deleting a reservation under this regime is essentially
the same as in a system without relations: a reservation can always be removed
and leaves no traces in the system.
This approach does not seem viable as it allows the creation of invalid relations.
Assuming a reservation is used in a binary operator like ∧ or ∨: there is no clear
concept of how the relation should behave. The reservation could be replaced by a
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static constant 0 or 1, marking it either as permanently offline (see the respective
approach below) or online. Both cases can be problematic. Consider the latter
case of marking a reservation as permanently online: Whereas a ∧ relation would
behave as if this reservation didn’t exist any longer (which could be considered
correct on the grounds that it was removed), as si ∧ 1 = si, a ∨ relation would
effectively become useless. As si ∨ 1 = 1, the state of si would no longer have
any bearing on the relation at all. Relations like si ⊕ 1 would behave even worse,
effectively blocking the related reservations from being enabled ever again.

Transitively remove any relation the reservation is part of If the system considered re-
servations as the “foundation” for relations, then it could transitively remove any
relation that a reservation is part of. However, without removing all other re-
lated paths, this approach would lead to an issue: the system state could contain
paths which are unusable from the application’s point of view, but are no longer
constrained by any relation, thereby wasting bandwidth.
Transitively deleting relations and related paths might lead to a chain reaction,
with the deletion of a single path tearing down a whole reservation structure. It
could be argued, that signaling a single deletion constitutes a modeling error any-
way, and keeping the network state consistent is therefore of overriding importance.
However, the same argument can be made for the refusal to delete bound reser-
vations. The latter approach errs on the side of caution by refusing to execute a
potentially dangerous action, while the former focuses on faster cleanup of poten-
tially invalid relations.

Mark the reservation as permanently offline and deleted If an initiator deletes a reser-
vation, it indicates that it doesn’t intend to use the corresponding capacity any-
more. This indication could be taken as a sign that it has no intention of fulfilling
any prerequisites for other reservations, as indicated by the relations once modeled.
By marking such a reservation as permanently offline, the system can reflect this
in a consistent way in its internal state. Any further resource allocation would
have to take this indication into consideration when calculating its value. In line
with considering such a signaling as a modeling error, the system should inform
the initiator about the fact that the reservation was part of a relation, giving it a
chance to rectify the situation.
This approach is something of a compromise between approaches 1 and 3. On the
one hand, it immediately enacts the change requested by the initiator by calculating
a new solution under the assumption of the new path state. On the other hand, it
still protects reasonably against a deletion cascade by only suspending reservations
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where necessary.

KASYMOSA QoS’s implements approach 1. Deleting a reservation from a relation
is considered a modeling error and rejected by the system. To avoid having to delete
reservations due to life-time expiry (where no originator of any signaling could be blamed
for the error), the system unifies the life-times of all reservations in a relation, ensuring,
that a relation and their reservations will be deleted togetherc.

To allow an initiator to delete a whole relation with its constituent reservations, the
system ensures that the multiple deletion requests in one signaling process are executed
in an order which prevents errors.

4.1.5. Modeling parameter updates
The protocol primitives do not include an UPDATE request. To simplify modeling and
implementation of the request structures, reservations are considered static. However,
the relation model can be used to flexibly model updates where necessary. By injecting
a new request into the network and correctly relating it to an existing reservation, an
initiator can choose between different replacement strategies.

Unconditional replacement If a reservation is to unconditionally replace another, the
initiator simply signals the deletion of the old path and the reservation of the new
one in the same request. Routers will free the resources currently assigned to the
old path and try to acquire them for the new reservation. If this process fails, the
user is left without any reservation at all (the old one has been torn down, the new
one is rejected). This is exactly what this strategy is trying to achieve: replace the
old path even at the risk of losing the reservation altogether.

Conditional replacement A less risky strategy for the initiator is to replace a path with
a new reservation only if this can be successfully achieved. Otherwise, the old state
will be kept. This can be achieved by reserving the new state within an Exclusive-
relation to the existing one. Routers can then try to enable the new reservation.
If this fails suspend it and enable the old version. Once the new state is in place,
the initiator can send a delete request for the old state and the relation. While
this strategy increases the signaling overhead for parameter updates (because it
requires at least two round-trips: one for the request and one for the deletion), they
are rare enough to be negligible. Their main use case would be the adaptation of
a reservation due to current network conditions, something, that can just as easily
be signaled via an exclusive relation in the path setup process.

cSee section 3.3.3.2 on why different lifetimes in a relation should be considered a modeling error.
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Figure 4.3.: Unicast reservation with end-to-end paths

4.2. Path structure
Reserving a QoS path in an IP network necessarily means creating state on multiple
independent systems along the way. While we might think of the path as an end-to-end
structure, it actually comprises multiple nodes, each dedicating a part of their transmis-
sion resources. How those nodes implement the reservation is transparent to the user.
Conceptually, there are two approaches to this problem:

1. Paths are always end-to-end. This approach, taken by systems like MoSaKa, con-
siders the end-to-end path as one single entity signaled to each router along the
way. Those then provide their service directly to the initiator of the reservation.

2. Paths are hop-by-hop only. Systems like GISTd or DiffServe expect the requested
service always from their next-hop neighbor without any mandate on how this
node actually acquires the necessary resources.

Approach 1, depicted in figure 4.3, is simple to implement in a path-coupled system:
the initiator sends the reservation request along the intended path, where each router on
the way can intercept it and reserve the necessary resources locally. All path maintenance
– with the possible exception of garbage collection for expired paths in a soft-state system
– is done by the initiator.

Approach 2, in contrast, is much more involved: figure 4.4 shows a reservation of three
independent end-to-end paths in a hop-by-hop system. Each path consists of a multitude

dGIST as a transport system does not mandate any reservation scheme at all. The hop-by-hop nature
of GIST is embedded in the structure of the transport overlay.

eDiffServ does not mandate reservations per se. However, conceptually, the system implements a per-
hop QoS behavior that may include reserved capacity for individual traffic classes.

78



4. The KASYMOSA QoS Transport System

I1 I/P I2

I/PI/PI3 I/P P

Figure 4.4.: Unicast reservation with hop-by-hop paths

of segments between neighboring nodes, linked within each router. Every path segment
is an independent reservation which secures the necessary down-stream services. In such
a system, each router fulfills the dual role of a peer (i.e. the endpoint for a reservation)
and of an initiator (i.e. the originator of the next segment towards the actual path
endpoint). While this approach incurs a higher complexity on each router – at the very
least it now has to keep two reservations, one incoming and one outgoing, as well as
their connection – it does have the advantage of allowing a more flexible adaptation
of reservations. Routers can change the actual reservation parameters to account for
any additional overhead, and easily merge reservations into aggregates (or even split
aggregates for that matter, e.g. to transport them over multiple outgoing links).

4.2.1. Multicast support
The real benefit of a hop-by-hop solution lies in the simple implementation of multicast
reservation support. Figure 4.5 shows a possible multicast reservation setup in an end-
to-end system. The initiator I1 was the first to reserve the multicast path all the way
towards the source node P. Afterwards, when I2 and I3 joined the same multicast
group, their paths were terminated at their respective attachment points to the existing
distribution tree.

Setting up this kind of reservation in an end-to-end system is simple enough: routers
just need to be aware of multicast reservations (which is not an issue, given the fact that
multicast uses a specific IP address range) and merge them where applicable. However,
deleting paths is a different matter. Assume I1 wanted to leave the multicast group and
tear down its respective reservation. Without special consideration, this would break the
distribution for I2 and I3 as well, since they rely at least in part on a path not controlled
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Figure 4.5.: Multicast reservation with end-to-end and partial paths

by themselves. Routers would need to detect this situation and transfer ownership of
the still required path segments to another initiator. This could either be achieved by
taking over the control within the router itself or handing it over to one of the remaining
initiators (in this example this would preferably be I2, as it is the only user of the segment
R1–R2). In any case, this incurs additional signaling to synchronize the change in the
network.

Realizing the same structure in a hop-by-hop fashion simplifies things considerably.
Figure 4.6 shows the same setup using this approach. Each path segment is controlled
by its originating router. The end-to-end paths are formed by linking individual segments
together. For multicast support, multiple segments may be linked to a single one (as
demonstrated, for example, by linking the red and blue segments to the yellow one).
Reservation setup is just as complex as in the end-to-end approach: routers have to
recognize multicast reservations and merge them where appropriate. However, tearing
down a reservation becomes much simpler: routers just need to remove the links between
the respective path segments, forwarding the deletion request only if the last link for
an upstream segment was removed. No additional signaling to transfer ownership is
necessary.

4.3. Signaling transport
KASYMOSA QoS’s signaling transport subsystem should fulfill the following require-
ments:

Minimize signaling overhead In line with the overall goal to minimize protocol over-
head, the transport subsystem should not introduce more signaling than absolutely
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Figure 4.6.: Multicast reservation with hop-by-hop paths

necessary. In the ideal case, each transmission of a request requires only two mes-
sages: the request and an answer.

Provide robust transport The signaling subsystem rests on the assumption of a robust
message transport. The transport system should be able to cope with message
losses and duplications. Due to the specific nature of the signaling application
(related messages are infrequent and self-contained), order guarantees are unnec-
essary. The system can reasonably expect to have a signaling transaction finished
before starting a new one.

Low transport delay Signaling interactions occur at random points in time and are short
in nature. The transport system should be able to forward them with the minimum
delay. It should not entangle independent signaling requests: message loss for one
request should not incur any queuing delay for unrelated requests that happen to
be taking the same forward path.

Integration of legacy networks The signaling subsystem must not rely on specific fea-
tures of the underlying network. In particular, it needs to be able to cross legacy
systems without QoS support. The transport system should, however, be able to
detect such systems and indicate their presence to the signaling subsystem.

4.3.1. General Internet Signaling Transport
The General Internet Signaling Transport protocol, as described in section 2.3.2.1, seems
like the canonical answer to all signaling needs in a system like KASYMOSA QoS. The
protocol offers one-shot, stateless signaling, as well as a permanent signaling overlay
between neighboring NSIS entities. The former, achieved by using Datagram mode, is
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intended for short-lived signaling needs, especially when integrating mobile nodes into
the network. The more long-term Connection mode (C mode) creates an overlay of TCP
connections to transport signaling messages with delivery and ordering guarantees. GIST
is able to cross legacy networks by using a specific forwarding mode (Query modeQ mode,
an adaptation of the Datagram mode) whenever no routing state exists. In Q mode, the
entity sends messages directly towards the signaling target (e.g. QoS path endpoint)
with the router alert option header set. GIST-capable routers along the way intercept
those packets and interpret them, setting up routing state as necessary.

Due to the design of TCP as a transmission protocol, signaling messages can only
arrive at a neighbor in the order they were transmitted. A loss of a TCP segment of
one message will lead to all subsequent messages being held up until the retransmission
of said segment is successful. As GIST, in its typical mode of operation, transmits all
messages between neighboring nodes over the same TCP connection, a message loss
even affects unrelated signaling operations. This issue can partially be alleviated by the
use of SCTP as the underlying transport protocol [FDC11]. Instead of a single TCP
connection, RFC 6084 specifies the use of an SCTP association in C mode. Leveraging
the multi-stream capabilities of SCTP, e.g. by assigning different NSLPs to different
streams, GIST is able to isolate signaling flows of those applications against each other.
The RFC does not mandate an option to separate individual signaling message exchanges
(e.g. individual reservations) within the transport layer. SCTP could support guaranteed
delivery without order guarantees (and therefore solve the stalling issue) on the signaling
message level. However, this would require changes to the existing specification, to
provide the necessary guarantees beyond the NSLP level.

GIST can also operate in Q mode (or D mode, respectively) only. Messages are then
sent as individual UDP datagrams, and do not suffer from the stall problem presented
above. However, the main advantage of C mode, guaranteed delivery, is lost in this mode
of operation. The QoS application will have to ensure retransmissions on its own.

Given these issues, there is no benefit to implement KASYMOSA QoS as an NSIS
QoS-NSLP within the context of this research. It would create significant effort without
appropriately simplifying the implementation and evaluation of the system. However,
when pushing the system from research to production, the adaptation to this standard
protocol could be beneficial. Future work should therefore include an analysis of the
exact nature of the adaptations required, both on the KASYMOSA QoS and NSIS side.

4.3.2. KASYMOSA QoS transport layer
KASYMOSA QoS implements an own signaling transport tailored to its specific use case.
Combining minimal interactions with reliable message transmission, it tries to provide
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the best solution for the envisioned operation environment.

4.3.2.1. Reliable message forwarding

The transport layer forwards messages without any preceding handshake, to keep signal-
ing delay low. This approach precludes transport protocols like TCP or SCTP, which
have a connection setup phase. The protocol of choice for connection-less transmissions
is the User Datagram Protocol (UDP), similar to GIST D/Q mode. UDP does not offer
any delivery guarantees, leaving any possible reliability algorithm to the application.

In order to implement reliable transmission, while still limiting the amount of mes-
sages transmitted, KASYMOSA QoS closely integrates the acknowledgment/retransmis-
sion mechanism with the QoS protocol itself. The system operates in a request-response
manner, with each QoS request being answered by an appropriate response, be it success-
ful or not. The reliability layer exploits this protocol design and assumes the individual
request as the basic unit of retransmission (as opposed to a message as protocols like
TCP would do). Requests can be acknowledged within the normal protocol operation
by their respective response (e.g. a successful reservation as a reaction to a reservation
request) or, where necessary and appropriate, using the special return code PENDING.
The latter enables a router to acknowledge the successful reception of a request, while
indicating that a higher-layer protocol operation will take additional time (e.g. reserving
a specific resource which might take longer to acquire).

Retransmission is triggered by a timeout. The determination of actual timeout value
is outside the scope of this work. Routers should choose their retransmission timeouts
based on information they may possess about the future path of a request (e.g. longer
timeouts if a request has to cross a satellite link), as well as any history information (e.g.
any prior retransmission attempts for a specific target and their timing behavior).

While this approach tightly couples the transmission protocol with the QoS layer, it
has the benefit of removing additional protocol messages, as would be transmitted by
TCP or SCTP. In the standard use case, where messages are successfully transmitted,
this system uses exactly the minimum amount of messages possible, one request and one
reply, while still maintaining a delivery guarantee in the case of an unreliable link.

The transport layer does not implement a congestion control mechanism, such as
exponential back-off. Signaling messages are sufficiently infrequent to render such mech-
anisms unnecessary. The protocol also does not implement segmentation mechanisms
like TCP, tailoring its messages to the path MTU. While relying on IP for segmentation
can lead to increased message loss (due to the individual IP packet loss rates adding up,
when a signaling message is segmented), signaling messages are typically small enough,
to stay below the required minimum MTU for IP anyway. Future research is needed,
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I R1 R2 PRL

I → P: Request

R1→ P: Request

R2→ P: Request

P → R2: Response

R2→ R1: Response

R1→ I : Response

Figure 4.7.: Example of a reservation process in the KASYMOSA QoS transport layer

to assess, whether these assumptions hold for links with a higher load. In these envi-
ronments the system will have to handle more and, due to request aggregation, larger
signaling messages.

4.3.2.2. Neighbor discovery

KASYMOSA QoS’s neighbor discovery algorithm is inspired by the Q-mode of GIST.
Request messages are addressed to the final target (i.e. the path’s endpoint) and are
routed using normal IP routing. QoS-capable routers along the way intercept those
messages, interpret them as needed, and send on the appropriate requests towards the
target. Figure 4.7 shows an example of a request traversing two routers. While the
forward messages are always destined for the peer P, return messages are addressed at
the node that initially sent the request.

By addressing forward requests to the target node, the system is able to transparently
bypass legacy routers (as depicted in figure 4.7 by the grayed-out router RL). These
systems will simply not intercept the message and forward it via the usual IP routing.

Bypassing an intermediate router could lead to a violation of the QoS guarantees.
Figure 4.8 depicts a situation, where an QoS-incapable interior router of a network could
lead to such a violation. If the reservations p1 and p2 exceed the capacity of the link
RL−−RE , the legacy router RL will not be able to detect this (as it has no QoS capabilities
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Figure 4.8.: Possible collision of two reservations on a legacy router

whatsoever). In this case, packets are forwarded by RL in a best-effort manner, which
will invariably lead to packet loss and queuing delays for both reservations.

Detecting and resolving such an issue is outside the scope of this work. A possible so-
lution could involve routers sending signaling messages with a fixed outgoing TTL/Hop
Count field in the IP header. If the next intercepting node receives a hop count, which
was decreased by more than one, there is a legacy node on the path which did not inter-
pret the request. Routers can then either reject the request or just provide information
to the client about the best-effort path segment.

4.3.2.3. Last Node Behavior

When integrating a new QoS architecture into a legacy network the system can encounter
a situation, where the last QoS-capable node of a path is not the intended end-point.
However, KASYMOSA QoS relies on the last node of a path to return a response to a
request to trigger the overall response process (see figure 4.7 for an example of a message
sequence chart. Here, P triggers the response process towards I by responding to the last
request sent by R2). If such a response is not given, the protocol will fail a reservation
at some point, effectively preventing the integration of legacy nodes as peers.

NSIS QoS-NSLP [MKM10] discusses this problem in the context of its topology change
detection. The specification gives three distinct cases for the last node of a signaling
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path:

1. The last node is the intended receiver of the signaling request. This is the case
presented in figure 4.7. The protocol operates as normal, no special handling is
necessary.

2. The last node is configured as a proxy for the actual signaling target. This case is
a special case of the “legacy router”-scenario. The last router simply terminates
the path and indicates success to the initiator.
If the intended reservation is for a data flow towards the peer and the reservation
stops just one hop short of the target, the resulting reservation setup is actually
indistinguishable from a normal signaling process. In this case the last resource
reservation would be at the outgoing interface of the last router towards the peer
anyway, something which can easily be achieved.

3. The last node is not explicitly configured as a proxy for the actual signaling target.
If a router discovers that there are no more QoS-capable nodes towards a target,
it assumes the proxy role for the target. The actual detection of this condition is
not part of this work. The transport system could interpret network management
messages like ICMP “Port Unreachable” (which would be sent by a standard target
system upon reception of a UDP datagram for a port, which is not open) to detect
availability and QoS-capability of the intended receiver.

In KASYMOSA QoS’s use case, the primary goal is to assign satellite transmission
resources to the requested paths. In such a scenario, the receiving satellite terminal could
be configured as a proxy for all but the known QoS-capable end systems. While this
would effectively terminate each QoS path before even entering the Internet at large, it
would most likely offer the required QoS. Satellite resources are very scarce compared to
resources in standard infrastructure networks. The bottleneck of a path would therefore
most likely be on the satellite link, something which could be effectively handled in this
configuration.

4.3.2.4. Asymmetric routes

KASYMOSA QoS, as presented here, cannot operate in an environment with asymmetric
routes. Reservations are made hop-by-hop with the responses being transported back
via the same link. Figure 4.9 depicts a case in which the routing breaks the signaling
process. A reservation p1 is forwarded to router R2. At some point in the process (after
reserving local resources and potentially creating further signaling messages not shown in
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the figure) R2 sends a reply message to R1. Due to the routing setup of the network this
messages would have to travel along the path R4→ R3→ R1→ R2. The QoS subsystem
at R4 intercepts the message and drops it because from its point of view it received a
reply to a request it never sent. The message is never forwarded along the dotted parts
of the return path.

R1

R2

R3

R4

p1

Figure 4.9.: Broken routing of a reply message

Even if all routers in this scenario forwarded the reply, until it reached its intended
recipient, KASYMOSA QoS would have other issues in such an environment. The system
is able to signal reservations for data flows, that travel in the opposite direction of the
signaling flow. In an asymmetric routing environment, this would lead to resources
being reserved at the wrong routers. Figure 4.10 illustrates the issue: the reservation p1
originates at the initiator I and travels along the blue path towards the peer P. Along
the way individual path segments are reserved according to the algorithms presented in
this work. As the reservation is actually intended for a flow, that travels from the peer
to the initiator (e.g. the downlink portion of a TCP connection), the actual data flow
d1 is decoupled from the reservation flow. Consequently, routers R3 and R4 will have no
resources assigned to the reservation, while R2 will reserve resources for a data flow it
never forwards.

This issue could be tackled by introducing a two-phase reservation protocol. Reserva-
tions for paths in the direction of the signaling flow would be reserved in the forward
phase. Once the signaling process reaches the last node on the path, it enters the reverse
phase. Any reservations in the direction from the peer to the initiator are reserved in
this phase. Future work will have to look at the exact implications of this approach
on the signaling process, the number of signaling messages and possible changes to the
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Figure 4.10.: Wrong path coupling in an asymmetric routing setup

signaling protocol itself.
One last issue in an asymmetric setup stems from the concept of related paths. When

related paths take different routes through the network, additional signaling might be
necessary to synchronize their state and correctly calculate the state of their relations.
Again, the exact implications on convergence time, wasted resources or required signaling
are outside the scope of this work and have to be investigated in the future.

4.3.2.5. Routing cycles

Due to the distributed nature of the routing system in the Internet, configuration errors
can lead to cycles in the routing graph. The architects of IP anticipated that possibility
and designed a mechanism, to gracefully fail in such a situation, instead of continuously
forwarding packets. Each IP packet carries a Time-to-Live (IPv4) or Hop Count (IPv6)
field in its header. This field is initialized to a specific value when creating the packet and
decremented at each router the packet passes. Once the field reaches zero, the packet is
discarded and an appropriate error message is sent to the originating node (e.g. ICMP
Time Exceeded for IPv4).

The transport system of KASYMOSA QoS effectively undermines this mechanism.
Transport packets are intercepted at each QoS-capable router, their requests are inter-
preted and new transport packets are created where necessary. The TTL is reset each
time, preventing IP from detecting loops in the forwarding graph. As requests are ag-
gregated into forwarding messages without regard to their history (e.g. whether they
arrived in a message together), a common Hop Count for a set of requests is impossible
in any case. The basic forwarded unit is the request, not the message. Therefore, cycle
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detection has to take place on this level.
The actual reaction of the system to such a cycle depends on the value of the Collision

Policy of a request:

Reject A routing cycle will invariably lead to a node receiving a request with the same
filter twice. This collision leads to a rejection of the request, preventing it from
traveling any further. This is the correct behavior, albeit unintentional due to a
collision rather than a cycle detection.

Merge Exact If a “Merge Exact” request returns to a node, it has already been re-
quested from, the system will basically merge it with itself (the system has no
means of detecting the duplication, as the request, even though it shares filter and
parameters with it’s existing copy, will have a new unique identifier). Merging a
request with itself leads to a dead-lock in the protocol. The newly arrived request
waits for the request it was just merged with to finish. This request in turn waits
for its forwarding chain to return, the very chain, that ends with the request just
merged. As both requests are therefore transitively waiting for each other, the
protocol dead-locks. At some point, this dead-lock will be broken by a timeout,
failing the request. This is again the correct result, albeit with a very long delay
and potentially superfluous retransmissions of requests.

Actively detecting route cycles can speed up error detection, specifically in the case
of request merges. Simply attaching a Hop Count field to each request (as IP does with
its packets) will not solve the routing cycle issue. It will not change the behavior in the
Reject-case at all. In the Merge-case the behavior will depend on the exact hop count
value and the length of the cycle. If the cycle is shorter than the remaining hop count,
the system will display the same erroneous behavior as without the counter. However,
it will add the issue of selecting the correct maximum hop count. Too low, and requests
will not go through at all, too high, and the mechanism is rendered useless for the merge
case.

To detect cycles, no matter their length, KASYMOSA QoS could use a distributed
marking algorithm. If a router receives an unmarked request, it attaches a random
mark value. Routers record all marks of requests passing through them. Should a router
detect a filter collision between two requests that have the same mark value, but different
identifiersf, it rejects this request with a ROUTE CYCLE DETECTED error code. Mark
values are deleted, when either the request is finally answered or based on a timeout.

fThe “different identifiers” requirement distinguishes requests that returned via a cycle in the routing
graph from duplicates sent by another router. Simple retransmissions of a request will share the same
identifier
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4.4. Security considerations
As any other protocol installing state in the network and influencing the forwarding of
traffic, KASYMOSA QoS has significant security implications. This section discusses
the main issues, without being a thorough security analysis.

Denial-of-service via parameters The most basic attack against nodes sharing a path
with an attacker is the reservation of a high-priority, high-volume path (or multiple
low-volume ones), effectively eating up all available resources. Once a path is
admitted and used, especially if it cannot be easily preempted due to its priority,
legitimate requests will be rejected due to insufficient resources.
To prevent such an attack, service providers have to specify what constitutes a
legitimate reservation and how much resources each partner is allowed to request.
These questions go beyond the mere technical implementation of a QoS system,
into the realm of Service Level Agreements.

Denial-of-service via filter The filter object controls which traffic to apply the QoS to.
By using appropriate filters, malicious systems could effectively mount denial-of-
service attack against other systems or networks. If a malicious system shares at
least one node on a path to a target with the system under attack, it could con-
ceivably disrupt the traffic flow by simply forging the source/destination addresses
in the filter object and requesting a very low QoS. If the attacked system has no
colliding filter already in place, the request would go through and disrupt any best-
effort transmissions, as well as preventing possibly legitimate future requests from
succeeding. The closer the shared node is to the target system, the greater the
damage, as more and more parts of the Internet could effectively be “disconnected”
from the point of view of the attacked node.
Due to KASYMOSA QoS’s segmented structure making it common for one system
to reserve resources on behalf of another, this type of attack can only be prevented
at the network edge. By verifying, that the requesting system is actually allowed
to act for the source and destination addresses specified in the filter object, routers
can stop malicious requests from entering their domain. How the necessary trust
relationships are established and what additional information (e.g. request signa-
tures forwarded throughout the path) might be needed is beyond the scope of this
analysis.

Path disruption by spurious suspend/delete messages In its current incarnation all
routers in the QoS system trust each other to only send signaling for resources
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they actually have requested or serve. By injecting spurious suspends or deletes,
an attacker could disrupt legitimate reservations by other users. KASYMOSA QoS
uses random 128-bit UUIDs as reservation identifiers. These IDs are not disclosed
beyond the involved systems. An attacker would therefore have to intercept the
appropriate messages or guess their UUIDs, making this attack highly unlikely.

Denial-of-Service on the signaling layer By simply sending massive amounts of signal-
ing messages into the system, an attacker can delay or even disrupt the execution of
legitimate requests. This attack is nearly impossible to defend against, especially if
it occurs from multiple sources (distributed DoS). Its effects can be somewhat alle-
viated by limiting the amount of signaling messages, an individual node can inject
into the system. However, since the handling of reservations is a rather expensive
process for the router (possibly triggering resource acquisition and optimization
processes), even low-volume attacks from multiple attackers may quickly overload
the core network without being detectable at the network edge.

Information disclosure The concrete structure of communication links in a system can
be sensitive information in certain use cases. Reservation meta-data could reveal
information about communication (and therefore organizational) structures or pat-
tern (when communication takes place) and serve as a basis for more targeted
attacks. Malicious systems can effectively “probe” for existing reservations by pur-
posely creating colliding filters and evaluating the network response. Depending
on the level of detail (e.g. “Do systems A and B have any connection at all” vs.
getting all the individual reservations), even a low-volume probe could reveal the
necessary information.
Similar to the denial-of-service via the filter object, this attack can only effectively
be defended against at the network edge. By clearly specifying and enforcing which
system is able to create what type of filter, edge routers can stop malicious requests
from entering the network.

This analysis is by no means exhaustive. It highlights the main areas of interest for a
detailed security analysis and tries to give hints to possible countermeasures. Securing
the protocol is beyond the scope of this QoS-focused work.
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This work claims that KASYMOSA QoS is well suited for long-delay links with variable
capacity. The evaluation first establishes a set of parameters in section 5.1 which define
“well” in the context of this work. Results of the analysis and the conclusions drawn
from them, are presented afterwards in sections 5.2 and 5.3.

5.1. Performance indicators
To evaluate the improvements of KASYMOSA QoS over existing reservation-based so-
lutions, the following performance indicators are measured:

Wasted bandwidth The central claim of this work is that a misalignment between
protocol-intrinsic flow relations and the underlying reservation structure causes
transmission capacity to be wasted on reservations that cannot actually be used
by applications. A key indicator for the performance of the system is therefore the
amount of wasted bandwidth compared to existing solutions.

Remaining sessions The fundamental goal of a QoS-system is to transmit as much traffic
as possible, in compliance with its requested parameters. In cases of broken paths,
applications might either stop sending traffic or not receive their desired QoS when
transmitting via Best-Effort. In both cases, the performance on related, still active
paths may be impacted (e.g. the remaining path in a TCP connection).
This parameter is closely related to the wasted bandwidth (i.e. remaining sessions
go down if wasted bandwidth goes up). It is still worth looking at those parameters
separately. Even with zero wasted capacity, a system will not always be able to
fully serve all QoS traffic as intended. If the available capacity decreases, some
reservations will have to be suspended, no matter whether a systems is relation-
aware or not. By keeping relations intact, the system can expect to impact fewer
application protocol sessions (i.e. relations) than without any regard to path de-
pendencies.

Signaling overhead The need to transmit signaling information puts further strain on
potentially already limited resources. A QoS system is therefore better if it requires
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less signaling overhead, both in terms of messages and total bytes transmitted, to
achieve the necessary state changes. As the amount of bytes transmitted is highly
dependent on the actual encoding of the signaling protocol, this work focuses on
the message overhead alone. Messages tend to be small, so the dominating factor
for the signaling overhead is their number instead of their actual size.

Convergence time As a system with distributed state, KASYMOSA QoS requires syn-
chronization effort in the case of changes. Especially in long-delay networks like
satellite communication systems synchronization always incurs a noticeable time
overhead. A lower convergence time provides applications with faster start-up for
their reservations as well as quicker recovery after changes in the environment.
This parameter has a large influence on the overall performance in terms of wasted
resources, since a quicker synchronization lowers the amount of time resources are
wasted due to state inconsistencies.

5.2. Efficient resource allocation
An efficient allocation of the available resources to the reservations present is key to the
performance of the system. One of the main assumptions of this work is an improvement
of the allocation quality in terms of less wasted bandwidth and more remaining sessions
over existing solutions without a relation model.

In a full-fledged system, both parameters are highly dependent on parameters like
round-trip time or client behaviora. To eliminate these influences, the resource allocation
quality is evaluated in isolation.

The simulation assumes a competition of all known paths for the same variable re-
source (e.g. overall satellite capacity). 100% of the available capacity are assigned to
reservationsb. After limiting the capacity and optimizing the remaining bandwidth allo-
cation, resources will, to a certain extent, be assigned to reservations which cannot be
used due to their relations not being fulfilled. A relation-aware system should exhibit
significantly less of this wasted capacity and in turn be able to serve more QoS trafficc

aThe wasted bandwidth over time depends on, among other things, the question: when, if at all, does
a client detect a broken path setup and how does it react to this state? A client waiting for the
missing resource to return will waste more bandwidth, over time, on potentially remaining paths,
than one immediately giving up its related reservations. However, it will save signaling overhead, by
not sending any change requests in the case of short resource outages.

bThis is achieved by creating a random set of initial reservations and their respective relations and
assuming the sum of their resource requirements as the total capacity.

cBarring any relation conflict, an ideal optimization algorithm should never waste any bandwidth at
all.
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than its relation-unaware counterpart.
To evaluate the applicability of the system for different operation environments, the

following parameters are varied in the simulation:

Remaining capacity KASYMOSA QoS is designed for environments with highly vari-
able link capacities. Depending on the severity of the capacity change, the relation-
aware system may change its performance in relation to a dependency-unaware
implementation. The expected outcome is a widening performance gap with more
severe capacity losses for both wasted bandwidth and active session.

Number of reservations A smaller number of reservations will inevitably remove de-
grees of freedom from the optimization algorithm. Disabling one session out of 10
will free up a greater portion of the overall capacity than disabling 1 out of 100.
On the other hand, this will make it harder to allocate as much of the remaining
bandwidth as possible, simply because the “offcuts” will be larger. This is espe-
cially an issue for a setup with many “mutually dependent”-relations, which can
only be enabled or disabled as blocks. The overall performance in terms of active
session should therefore be somewhat impacted for relation-aware systems.

Relation complexity Relations bind multiple paths together to be treated as a unit.
The larger these units get, the higher the probability of a relation-unaware system
making mistakes and rendering sessions unusable for their respective clients.

Relation type KASYMOSA QoS is capable of expressing a wide variety of relations. In
order to estimate the influence of the relation type on the overall performance,
four different types of relations are evaluated: Mutually Dependent, Dependent,
Exclusive, and AtLeastN, all as presented in section 3.3.2.

Value variance Section 3.3.3 presents some issues with mixing reservations of different
priorities (and therefore ultimately different intrinsic values) in a relation. Varying
this parameter gives insight into the influence of these modeling issues, especially
with respect to different types of relations.

Table 5.1 summarizes the value space for the parameters described in this section.
In order to assess the improvements of a relation-aware system over existing solutions,

the simulations are carried out using three different implementations:

Path-based Optimization (PO) The optimization process is based solely on the value
of individual paths. This is akin to how RSVP-based systems handle resource
changes.
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Parameter Range
Remaining capacity 10% - 90% initial capacity
Number of reservations 8 - 512 reservations
Relation complexity 2 - 20 reservations
Relation type Mutually Dependent, Dependent, Exclu-

sive, AtLeastN (with N being half of the
reservations in the relation)

Value variance 1 ≤ vmax ≤ 255 is the upper bound of
a uniform distribution in [1, vmax] from
which reservation values are drawn at ran-
dom

Table 5.1.: Simulation parameters for evaluating wasted bandwidth and remaining sessions

Correlated Time (CT) The “Correlated Time” optimization, as a simple improvement
over the purely path-based approach, prefers to keep paths, that were signaled
at the same time, together. Without a formal relation concept, this approach
implicitly assumes paths from the same signaling process to be dependent on each
other. For optimization purposes, paths are first ordered by their intrinsic value (as
defined by the transfer function) and, if they have the same value, then correlated
by their arrival time (derived from the signaling packet they arrived in). This
approach should be effective to model mutual dependencies (e.g. TCP sessions).
It should fail to provide adequate allocation quality for other types of relations.

Relation-Aware (RA) The relation-aware system implements the full modeling power
as presented in this work. It should be able to totally avoid any wasted bandwidth
and provide a benefit over the two reference systems.

5.2.1. Mean wasted capacity in all scenarios
Analyzing the mean of the wasted capacity over all scenarios gives a first glimpse on the
benefit, relations are able to provide. Figure 5.1 shows the percentage of the remaining
capacity which is wasted for different adaptation scenarios. The figure does not show the
Relation-Aware scenarios, as those are not wasting any resources at all. Their respective
figures would be horizontal lines at y = 0.

The figure clearly shows the possible gains through application of a relation system.
On average, relation-unaware systems waste between 50% and 70% of the remaining
capacity.
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Figure 5.1.: Wasted capacity as a fraction of the remaining data rate for different problem sizes.
(The 128- and 512-paths scenarios for Path-based Optimization nearly coincide, hid-
ing the purple 128-path curve.)

For all reasonably large scenarios, the system behaves identically. All lines in the
graph match closely. An exception is the 8-path scenario. In this case, according to the
results, the wasted capacity decreases by 25 percentage points when compared to larger
setups. This is not an inherent improvement in performance for very small setups, but
rather an artifact of the way wasted capacity is calculated. It is defined as the sum of
all paths, which are part of an invalid relation:

cw =
∑

p∈Qw

cp

and
p ∈Qw↔ sp = 1∧ (∃r ∈ R : r = 0∧ p ∈ Fr)}

What is missing from this picture is the unassigned capacity: “cutoff” capacity that
cannot be assigned to any of the remaining paths. When the number of paths is low,
each individual path is of significant size compared to the overall capacity. If a path
cannot be fit into the solution, it is therefore likely to leave a bigger portion of the
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remaining capacity unused. Increasing the number of paths lowers the relative size of
this gap. Figure 5.2 shows unassigned capacity for two select scenarios: the smallest
one with 8 paths and the largest with 512 paths. The solid line again indicates the
wasted capacity. The dashed line, on the other hand, shows the sum of the wasted and
the unassigned capacities, effectively displaying the portion of the remaining data rate
that cannot be used for QoS-protected traffic. The 8-path scenario clearly exhibits a
much larger portion of unassigned capacity. For the 512-path scenario, the unassigned
capacity is absolutely insignificant, as it is within less than 1/50 of the wasted capacityd.
Looking at the overall unusable capacity, the two scenarios are much closer together and
the perceived advantage of smaller scenarios disappears entirely.
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Figure 5.2.: Wasted and total unused (including unassigned) capacity as a fraction of the re-
maining data rate for different problem sizes. This graph exemplifies the increasing
influence of unassigned capacity due to a packing mismatch for very small scenarios.
For 512 paths, the cutoff becomes negligible to the point of hiding the corresponding
line in the graph.

dAt most, the cutoff is just smaller than the smallest disabled path (otherwise that path would be
enabled). In the worst case, of 10% remaining capacity, at least 51 paths will be enabled (typically
more, as the system tends to prefer smaller paths with the same priority), making the cutoff smaller
than the average of the remaining paths.
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After establishing in figure 5.1, that all reasonably large scenarios behave the same,
all the following analyses will be based on a 512-paths setup.

5.2.2. Remaining Sessions
Wasting less capacity is just one part of the story. From the point of view of user sat-
isfaction, it is much more interesting to look at how many sessions the system is able
to support in a constrained situation. These two parameters are not fully orthogonal,
as wasting bandwidth diminishes the capacity for keeping sessions online. They are
not fully aligned either, as even a perfect resource allocation algorithm needs to disable
paths in an overload situation. Figure 5.3 shows the overall performance of all three
optimization algorithms over a whole range of adaptation scenarios. RA clearly outper-
forms its counterparts, at times keeping as many as twice the number of sessions active.
Interesting to note is the ability of RA to keep 40% of the sessions active with only
10% of the capacity remaining. This is due to the algorithm preferring sessions that
are below average in terms of their capacity. The 10% remaining capacity are based on
the average capacity for a path. In the original distribution, half of the paths are, by
definition, taking up less space than this average. As both the required capacity and
path value are randomly assigned and therefore uncorrelated, there exists a certain set
of high value, low capacity reservations, which fit into the remaining capacity, driving
up the number of active sessions.

Figure 5.3 does not include the results of the Exclusive relation. The behavior of this
relation is sufficiently different to skew the results unjustly in favor of the relation-aware
approach. To understand why that would be we need to take a more detailed look at
the results for each individual relation type.

5.2.3. Relation type
Figures 5.4 and 5.5 display a significant difference in performance for different types
of relations. While both figures show a clear performance benefit of a relation-aware
system, they also reveal the issue of optimizing towards the wrong goal in the case of
the CT strategy applied to Exclusive relations.

From the perspective of a relation, Path-based Optimization randomly enables reser-
vations in order to achieve the maximum value for the current capacity limite. It is
therefore expected that the Mutual Dependency shows dismal performance: there are

eOf course, the selection of paths to enable is not random at all, but purely based on their intrinsic
values. However, as these values are randomly distributed across paths in a relation, the selection
looks random from the point of view of said relation.
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Figure 5.3.: Percentage of remaining sessions as a function of the remaining capacity. This
graph only includes the “Mutual”, “AtLeastN” and “Dependent” relation types. The
“Exclusive” relation is significantly different. See figure 5.7 for further details.

only two out of 2k (with k being the size of the relation) valid cases: all reservations are
enabled or none are. The algorithm performs better for one-way dependencies: every
case, where at least the required path is online, is a valid solution. This increases the
amount of valid solutions to 2k−1+ 1 (2k−1 solutions with the dependency enabled, plus
the null-allocation). Even better still, are the results for the AtLeastN relation. For
each relation of size k there are 1+

∑k
i=k/2

�k
i

�
valid solutions, a number even bigger than

2k−1 + 1. When – from the perspective of the relation – randomly selecting solutions,
the optimizer is therefore much more likely to encounter a valid solution, decreasing the
resulting overall wasted capacity.

Correlated Time optimization treats every relation (i.e. paths that were reserved at
the same time) as a Mutual dependency. It is therefore not surprising that it does not
waste any capacity for either AtLeastN, Dependent or Mutual relations. The solution
is already the optimal case for the Mutual Dependency. It is also a special case for
AtLeastN and Dependent relations: both relations allow the null-solution, as well as the
full solution (i.e. all paths enabled). Therefore, an optimization strategy producing only
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Figure 5.4.: Overall wasted capacity for different types of relation. The Relation Aware result is
not shown, as this strategy does not waste any resources.

these two types of solutions might be unnecessarily restrictive (which will show in the
“remaining sessions” result below), but at least not produce any wasted capacity.

Both strategies show their worst performance for the Exclusive relation. They try
to enable as many paths as possible, a behavior which is exactly opposite to the opti-
mization goal for that relation. The analysis here slightly overestimates the amount of
wasted capacity: it counts any path in an Exclusive relation with more than one enabled
reservation as wasted. The highest valued path could be viewed as not wasted at all
because it can be used by the requesting application. The resulting allocation just uses
more resources than strictly necessary.

To explore this idea further, we take a look at the remaining sessions for each relation
type. The results depicted in figure 5.5 are as expected: relation types that lead to
a high amount of wasted capacity result in fewer remaining sessions. There is simply
less capacity remaining to distribute to valid relations. In any case, the Relation Aware
system is able to retain the highest proportion of sessions after adapting to a diminished
link capacity. Time Correlated performs the same for three of the four relation types,
and, not incidentally, the same as RA for the Mutual dependency.
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Figure 5.5.: Overall remaining sessions for different types of relation

Again, the behavior of the Exclusive relation stands out and warrants further inves-
tigation. A deeper investigation of the exact relation behavior for different adaptation
scenarios in figure 5.6 shows a similar picture as before: the Relation Aware approach
consistently outperforms Path-based Optimization and coincides with the Correlated
Time results for Mutually dependent relations. The AtLeastN and Dependent relations
allow the system to keep more relations online, even for severe adaptation scenarios,
than the Mutual dependency. They simply offer more valid solutions to the optimizer.
Instead of having to cut a whole session, the optimizer can gracefully degrade it by
disabling single paths. This is especially relevant for the Dependent relation in severely
constrained scenarios (below 25% remaining capacity). Where AtLeastN can only be
scaled down to the value of N for a session, Dependent can be downgraded to a single
path (the prerequisite path on which all others depend). This allows the system to keep
many more sessions online. f.

It is interesting to note the relative performance of PO and RA for AtLeastN and
Dependent relations in medium to low adaptation scenarios. Both strategies keep more

fThis is emergent behavior of the relation model in the optimization process. The optimizer does not
take the number of remaining sessions into account at all.
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AtLeastN relations online, although in theory the Dependent relation could be scaled
down much further. This is due to the Dependent relation removing a degree of freedom
by prescribing one specific path (the dependency) to be enabled. If this path is of low
priority – the very modeling error described in section 3.3.3 – it may be disabled first by
both strategies. PO works purely based on the path relation and is much more likely to
disable a session, hence the huge performance loss for that strategy. However, even the
Relation-Aware system will encounter the point where keeping a low priority dependency
online is less beneficial than disabling it in favor of a high priority dependent path from
another relation. RA will take the whole relation with it, freeing up more capacity for
other sessions and therefore exhibit lower performance loss. The AtLeastN relation does
not specifically mark out one path as important, giving the system more room to shift
around capacity. This effect reverses for very severe adaptation scenarios, where the
better scalability of the Dependent relation becomes relevant.
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Figure 5.6.: The optimization performance on different relation types. The Correlated Time
(blue) approach coincides with the Relation-Aware optimization for the Mutual de-
pendency and is therefore nearly invisible in the graph.
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For reasons of visual clarity the results for the Exclusive relation have been moved to
figure 5.7. The graph shows an exceptionally good performance for the RA system and
basically no performance for PO or CT. These results are slightly misleading, however.
The simulation calculates the initial resource requirement by summing up all individual
paths (as a relation-unaware system would do) and reduces the capacity based on that.
As each relation only requires one out of up to 32 paths to be online, the system is able to
support 100% of the sessions, even when adapting to quite severely constrained situations.
The PO optimization, on the other hand, does not show any decent performance, even
at high remaining capacity, precisely because the system was not build for this use case.
It enables as many paths as possible, making the Exclusive relation invalid almost by
definition (as this relation literally indicates “any one of them, but not more”). The
CT optimization strategy performs even worse: because it implicitly assumes a mutual
dependency between paths reserved at the same time, it optimizes for exactly the wrong
target. Instead of enabling one path per relation, it enables all paths or none. Therefore,
it does not produce any valid relations at all.

However, the relation validity under-estimates user satisfaction for the Exclusive rela-
tion. If the user did not care about the wasted capacity in the relation, she would still
be able to use the best online path from each session and get her data transmitted. This
significantly increases the performance figure for the PO system, although it still falls
short of the relation-aware approach. CT also performs better in this category. However,
its performance is worse than the PO strategy, as it either enables all reservations or
none. With decreasing capacity, the number of relations where all paths can be enabled
(and therefore the number of sessions containing at least one usable path) decreases as
well.

5.2.4. Relation complexity
Looking at the behavior of the system from the relation complexity perspective yields
the expected results: with increasing complexity, the wasted capacity increases and the
remaining sessions go down. Figure 5.8 shows the wasted capacity again for the Path-
based Optimization and Correlated Time approaches over all relation types. The CT
result shows a nearly constant wasted capacity contributed exclusively, as it were, by
the Exclusive relation.

Digging deeper into this result in figure 5.9 reveals nearly 100% wasted capacity for
the Exclusive relation. The amount drops slightly with larger relation sizes. This is due
to the algorithm considering the relation to be a Mutual dependency. It therefore either
enables all reservations (which is not a valid solution for Exclusive) or none (which is
valid for the Exclusive relation). With increasing relation complexity, the overall number

103



5. Evaluation

10 20 30 40 50 60 70 80 90
remaining capacity ratio (%)

0

20

40

60

80

100
re

m
a
in

in
g
 s

e
ss

io
n
s 

(%
)

PO

CT

RA

PO (usable)

CT (usable)

Figure 5.7.: Performance of the optimization algorithm on the Exclusive relation. This use case
is not supported without some kind of relation model and therefore performs excep-
tionally poorly. Dashed lines show the usability of at least one path in a session
ignoring potentially wasted capacity within the same relation.

of relations in a scenario goes down. Therefore, each relation takes up a larger chunk of
the total capacity available. When adapting to a lower capacity, the “offcut” becomes
larger: capacity that cannot be assigned at all because none of the remaining sessions fit.
The non-wasted capacity in this picture is therefore not used to transport QoS-protected
data, but rather stays unused in this specific scenario.

For the Path-based Optimization approach, increasing complexity also increases the
amount of wasted capacity. From the point of view of the relation, the algorithm, again,
randomly enables paths to fill up the available capacity. It has therefore an increasing
probability to produce invalid result with increasing relation size.

Looking at the detailed results in figure 5.9 reveals the Exclusive and Mutual relations
to be the dominating factors in the overall result. Both waste nearly 100% of the remain-
ing capacity for larger relation sizes. Both relations have only two valid solutions out of
2k (with k being the number of paths in the relation). In the nearly random selection
process, they therefore both have a 1/2k−1 probability of producing a valid solution and
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Figure 5.8.: The wasted capacity as a function of the session complexity.

not wasting any capacity. For smaller relations, the effect becomes less pronounced,
resulting in a decreasing amount of wasted resources.

The proportion of remaining sessions depicted in figure 5.10 again exhibits the ex-
pected behavior: Relation-Aware optimization by far outperforms the other systems
for every session size. This is due in large part to the inclusion of Exclusive relations.
Where they slightly improve on the overall system performance for the Relation-Aware
algorithm, they severely lower the result quality for PO and CT systems. Removing this
relation type from the analysis narrows the performance gap to 10-25% for the scenarios
presented here.

5.2.5. Path value variability
The variability of path values within a relation does not have a significant influence
on the performance for any of the presented systems. Figure 5.11 shows a very slight
improvement for PO at very low variabilities (vmax ≤ 2). This is due to the AtLeastN,
Dependent and Mutual dependencies, which all waste slightly less capacity in these
scenarios. As the optimization algorithm for PO will order paths solely based on their
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Figure 5.9.: The wasted capacity as a function of the session complexity.

intrinsic value, less variability in a relation leads to the constituent paths more likely
being “kept together” in the process, leading to less wasted capacity. Other than that,
the value variability does not influence the performance of the system.

5.2.6. Conclusion
The results of the adaptation analysis in large parts confirm the expectations from sec-
tion 5.2. There are significant performance gains in terms of wasted capacity, as well
as remaining online sessions to be had, when modeling relations in a QoS system. This
performance gap increases with increasing relation complexity. Especially the purely
Path-based Optimization is increasingly likely, to accidentally destroy relations (in par-
ticular for Exclusive and Mutually dependent relations, which have only a minuscule
number of valid solutions compared to their overall solution space for larger relation
sizes).

Correlated Time optimization provides acceptable performance for any kind of relation
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Figure 5.10.: Remaining sessions as a function of the session complexity.

which includes the full solution (i.e. all paths enabled) as a valid result. It is still
outperformed by a Relation Aware system in terms of remaining sessions because it
is not able to take advantage of the room for graceful degradation which a specific
application might provide. However, due to the inherent assumption that every relation
is a Mutual dependency, the approach fails to provide any adequate performance for any
kind of Exclusive relation. The use case of signaling paths that are not to be enabled
until they are needed, is simply not supported by systems without some kind of relation
model.

5.3. Signaling
Changing the way the network reasons about reservations and their relationships might
have an influence on the signaling process as well. Whereas existing systems rely on the
initiator for a consistent path state, KASYMOSA QoS has more information available
and should therefore require less interaction with the end systems. To evaluate what
influence the relation model has on the signaling process, this section looks at two
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Figure 5.11.: Remaining sessions as a function of the session complexity.

performance indicators: convergence time and signaling overhead.
The convergence time is the time between a change in the reservation state at one

system (triggered by a request or a change in the network environment) and the point
in time at which all reservations along the path show a consistent state. Managing QoS
reservations is just a means to an end. From the user’s point of view, signaling and
reserving resources is no more than a delay she might be willing to pay for a guaranteed
service quality. Similarly, from the point of view of the system, the signaling process
is a necessary evil to synchronize state over all systems contributing to the requested
service. Minimizing the convergence time should therefore help to provide the best
possible service quality with the minimum amount of resources.

Signaling overhead is a necessary evil for both the end user and the system. Distributed
state, by necessity, needs information transfer to be consistent. In an in-band signaling

108



5. Evaluation

system, such as the Internetg, signaling and user data compete for the same transmission
resources. A higher signaling overhead therefore automatically leaves less capacity for
reservations.

Both parameters are not fully orthogonal. Due to the fact that each signaling transmis-
sion takes time, more signaling overhead leads to a longer convergence time. However,
there are additional timing constraints, which may increase the convergence time even
beyond the simple time needed to transmit signaling messages and acquire resources.

The signaling performance is influenced by different system parameters:

Transmission delay KASYMOSA QoS is specifically designed with long-delay networks
in mind. A primary concern is therefore the influence of the transmission delay on
the overall signaling performance.

Packet loss rate Due to environmental factors, mobile systems typically exhibit signif-
icantly higher packet loss than wired networks. In order to cope with such losses
during the signaling, and eventually reach a consistent system state, a QoS system
will need to employ some form of retransmission algorithm. Depending on the
retransmission algorithm used, a higher packet loss rate will, to a varying extent,
increase both convergence time and signaling overhead.

System type As we are comparing KASYMOSA QoS to existing solutions, we again
need baselines to measure against. As we are focusing on the signaling process,
these systems are slightly different than before.
Modified RSVP The first system we compare against is a modified RSVP without

relations or suspend-resume capabilities. Whereas standard RSVP is only able
to reserve a single path with one signaling transfer, the modified version is
able to aggregate multiple requests. This is done to evaluate the influence
of the suspend-resume-mechanism, as well as the relation model, instead of
message aggregation.

MoSaKa The predecessor of KASYMOSA QoS introduced the notion of an active,
network-based suspend-resume mechanism, allowing the system to lower sig-
naling overhead for short-lived capacity issues. By evaluating this system, we
can distinguish the influence of the suspension mechanism from that of the

gDepending on your point-of-view a QoS system can be considered to be both an in-band and an
out-of-band system. For most existing systems, from layer four on up the signaling is out-of-band
as it employs different transmission channels (i.e. protocols) than the actual data. On layers three
and below, however, most systems mix data and signaling packets on the same channel and should
therefore be considered in-band systems.
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relation model. This system should show improvements especially in terms of
the convergence time when a degraded capacity is restored. Without active
resume, end systems can only rely on periodic reservation attempts. These
are necessarily only transmitted with a certain interval to keep the signaling
overhead down. This retry period inherently introduces an additional delay to
system convergence, which is eliminated through the network-driven resume
process.

KASYMOSA QoS Finally, this section evaluates the full relation-aware system.
There are gains to be expected in signaling overhead and convergence time,
due to better decisions by the network when adapting to changing conditions.
Where the other systems rely on the initiator to signal the correct path setup
for each relation, KASYMOSA QoS is able to calculate the desired outcome
directly in the network, eliminating the need for interaction during the con-
vergence phase.

5.3.1. Network environment
The example network in figure 5.12 serves as an environment for the signaling overhead
analysis. The figure shows a representative example of a satellite network with the
central satellite link in the middle and a terminal attached to either side. Due to the
nature and range of satellite systems, they tend to include only one central link with
fast distribution networks on each end.

I T1 T2 P

tA

tStN tN

Figure 5.12.: Representative example network for convergence the time and overhead analysis.
The edge represents the satellite link between terminals T1 and T2. Additional
network nodes between the terminals and the respective path endpoints are omitted.
Their transmission and processing delays are summarized as tN . tS and tA represent
the transmission and resource acquisition delays of the satellite link, respectively.

The timing variables given in the figure are defined as follows:

tS The one-way transmission delay imposed by the satellite link. This includes the
processing delays of the physical and MAC layers, as well as the actual time-of-
flight of the signal to the satellite and back.
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tA The resource acquisition delay for sending a piece of data via the satellite link. De-
pending on the underlying system and state of the link, this may range from close
to zero to even exceeding 2 · tA. If the system uses statically assigned transmis-
sion resources or the appropriate transmission resource is already allocated from
a former transmission, there will be no significant delay. However, if the system
dynamically allocates physical resources and the allocation process involves other
partners on the link, the acquisition may take more than one round-trip time. The
KASYMOSA MAC link acquisition process opts for the middle ground: distributed
resource allocation without a central coordinator. Each station periodically signals
its resource requirements on a broadcast channel to every other station. Once all
requests are collected, every station performs a deterministic resource allocation
algorithm to determine its (and the other’s) transmission resources. Due to the
system design, this process takes at least 4 · tS to complete.
For the sake of this analysis, it is assumed that the resource acquisition will, on
average, take 2 · tS, while at the same time acknowledging that this value varies
largely, depending on the system and its current state.

tN The overall transmission and processing delay imposed by the networks between
the path endpoints and the satellite terminals. These are either wired wide-area
networks or wireless local networks. In any case, they impose much less delay than
the satellite link, so tN ≪ tS by at least two orders of magnitude.

5.3.2. Initial reservation
Whether a system is relation aware or not, the initial reservation has to pass through
the whole path at least twice until the initiator can use the requested path, resulting in
two signaling messages transmitted along the path. The exchange will take at least:

tR = 2 · tN + 2 · tA+ 2 · tS ≈ 6tS

This assumes that the acquisition of the resources for the reservation and the transmis-
sion of the signaling packets can take place in parallel. If these two events have to be
serialized, the delay will increase even further.

In case of a successful acquisition or a total rejection of all necessary resources, relation-
aware and -unaware systems are level. However, if not all necessary resources could be
acquired, the systems start to diverge. Whereas a relation-aware system will still receive
an acceptable service level in one exchange (that includes not receiving any service at
all), relation-unaware systems will have to handle different use cases differently:
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Mutual If at least one of the mutually dependent paths fails, the initiator needs to tear
down others that may have been granted. Assuming that each node immediately
releases allocated resources on reception of the delete message, the tear down
process adds ∼ 3 · tS to the total convergence time.

Dependent If the granted reservations include the dependency, the initiator can just use
the paths as they are. Should the dependency not have been granted, the initiator
has to signal another request, deleting a matching path of the dependent set and
replacing it with the dependency. This increases the overall convergence time by
∼ 6 · tS, as the initiator needs to receive the network response before being able to
use the associated paths.

AtLeastN The best strategy for the AtLeastN relation is to request the full resource set,
and react to the response where necessary. If the network can guarantee at least
the required number of reservations, no further action is necessary. If there are
less than N reservations confirmed, the initiator has to tear down the remaining
paths. The resulting message exchange increases the overall delay by ∼ 4 · tS.

Exclusive The only viable strategy for the initiator in a relation-unaware system is to
request the best path of the relation first. In case of a failure, without further
information, an adapted binary search strategy could be applied:

1. Remove all paths with higher costs than the last request from the relation (as
they will not be guaranteed by the network anyway).

2. From the remaining paths, select the cost-wise median for the next request.
If there is no such path, continue with step 4. If the request fails, repeat with
step 1. If the request succeeds, continue with step 3.

3. Remove all paths with a lower cost from the relation. Since the resources for
a higher-cost path could already be acquired, it would not be beneficial to
request them. Continue with step 2.

4. Now the maximum possible size for a path from the relation has been estab-
lished. In the initial relation, locate the path with the highest value at or
below the established cost. If this is different from the one already reserved,
delete the reservation and replace it with the high-value path.

For “well-behaved” relations (i.e. a strong correlation between cost and value of
the constituent paths) the last step will not yield a reservation and is unnecessary.
This process adds at least ∼ ⌈log2(k)⌉ · 6 · tS to the overall convergence time of a
relation of size k.
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Other relation structures might need an even more complex reservation pattern. In
any case, a relation-aware system will never be worse than a relation-unaware one when
reserving a set of resources.

In terms of signaling overhead, each additional message exchange adds two extra mes-
sages to the process. The relation-aware system will therefore have the lowest possible
number of messages: only two, if no informational messages (e.g. PENDING) are sent.

5.3.3. Resource degradation
Figure 5.13 illustrates the issue of additional adaptation events in a relation-unaware
system. In the example, three paths are mutually dependent. The relation-aware system
releases the whole set of resources in one go, avoiding repeated adaptation later. The
relation-unaware system needs two additional signaling processes, when the link goes
down further. As the system has no notion of a relation or wasted resources, it guarantees
these paths until there is not enough capacity left.
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Figure 5.13.: Adaptation events in a relation-unaware system compared to a relation-aware.

To avoid these issues, the system could rely on the initiator to correct relation viola-
tions, introducing additional signaling overhead and convergence delay.
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In the event of a link degradation, the appropriate router in each system signals certain
paths as no longer guaranteed. For RSVP this means deleting the path, whereas MoSaKa
and KASYMOSA QoS are able to suspend it. Both types of messages only need to be
transmitted towards the endpoints to create a unified state throughout the network. The
total transmission time is therefore 3 · tS+ tN ∼ 3 · tS (assuming the transmission towards
both endpoints runs parallel).

KASYMOSA QoS’s adaptation process ends there. However, both relation-unaware
approaches need to signal a deletion or suspension for the appropriate related reserva-
tions. Depending on exactly where in the network the change occurred, this introduces
different additional convergence delays. If the adaptation took place on the near side
of the satellite link with respect to the initiator (i.e. for outgoing paths from I to P),
the added convergence delay amounts to ∼ 3 · tS. Assuming that the update is signaled
in both directions at the same time, the initiator would be notified after tN about the
change and start correcting immediately. The correction would follow the initial signal-
ing towards P with a delay of 2 · tN . The network would reach a consistent state the
latest 3 · tN + 3 · tS after the causal change event.

If the adaptation takes place for an incoming path from P to I , it originates on the
far side of the satellite link (as reservations are always outgoing to the QoS router). It
therefore reaches the initiator after tN + 3 · tS. The initiator’s response reaches the peer
after 2 · tN + 3 · tS, bringing the total convergence time to 3 · tN + 6 · tS ≈ 6 · tS.

In an RSVP-like system, where paths are permanently deleted, the process ends with
a stable resource allocation. Suspend/Resume-systems like MoSaKa, on the other hand,
are extremely prone to oscillations. In a naive implementation, the initiator simply
signals a path suspension for related paths. This frees up resources on the degraded link,
possibly triggering a resumption of the initially suspended path, which in turn triggers a
resumption of the related paths by the initiator, restarting the whole adaptation process
again.

In order to avoid these oscillations, a Suspend/Resume-system has two options: either
the router only signals resource changes and lets the initiator take care of suspending
the correct paths, or the initiator ignores relation violations and does not signal at all.
The first approach adds an end-to-end signaling transmission to every resource change,
bringing the convergence time to ∼ 3 · tS and ∼ 6 · tS for near- and far-side events
respectively. The latter approach always limits the convergence time to ∼ 3 · tS, like
a relation-aware system does, but leaves resources unused, possibly triggering another
adaptation process later on, as illustrated above.

The inherent additional delay of a correcting initiator can also lead to inefficient re-
source allocation in fast-changing environments, as illustrated by figure 5.14. If the
degradation of a link is fast enough, that a second adaptation event on a path from
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another relation becomes necessary, the resulting corrections massively overshoot the
adaptation target capacity, leaving a significant amount of resources unused, only to
correct it again in a later resource increase step.
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Figure 5.14.: Correcting initiator overshooting the adaptation target in a fast-degrading environ-
ment. The figure illustrates the resource usage at the adapting router.

One final problem for a correcting initiator is, again, the Exclusive relation. Its in-
tended use case is to provide graceful degradation to a service via different QoS levels
(probably representing different user experiences). In case of a link degradation, the
correcting initiator needs to restart the allocation process described in section 5.3.2 to
find the best alternative reservation, that will provide some service level. This again
significantly increases overhead and convergence time.

5.3.4. Resource increase
When a constrained link necessitates the deletion or suspension of reservations, the
transmission intent of the end systems usually does not cease to exist. Once capacity is
available again, they therefore have an interest in reallocating their resources. However,
depending on the system, this requires different amounts of effort.
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Suspend/Resume systems, such as MoSaKa and KASYMOSA QoS, can notify clients
immediately upon return of their resources. Once a router has sufficient capacity avail-
able, it transmits a Resume message towards both path endpoints in a similar fashion to
the preceding Suspend. Routers along the way reacquire their respective local resources
and forward the resume message, just as they would do in case of the initial reservation.
Just as before, where KASYMOSA QoS’s allocation is correct right away, MoSaKa’s
may result in wasted resources.

The RSVP-like system does not have the active feedback mechanism. The initiator
can only rely on periodic re-reservation requests until communication can resume. How-
ever, this presents the problem of weighing signaling overhead against reaction time.
Figure 5.15 illustrates the issue of a mismatching retry interval with regard to the ac-
tual availability of resources. The blue event denotes the point in time when enough
resources to serve the requests would have been available again. As the RSVP system
only periodically attempts the acquisition process, it does not detect the available ca-
pacity until the the of the retry interval. The delay between availability and detection
is dead time, where the resources stay unused.

t

retry interval ∆tr

dead time ∆td

Figure 5.15.: Dead time due to mismatch between re-reservation attempts and actual capacity
increase events

Assuming a uniform random distribution of the resource availability point over the
retry interval, the dead time on average amounts to ∆td = ∆tr/2. The requesting system
therefore has to decide on the best interval for the current state of the network. In-
tervals that are too short cause increased signaling overhead due to unnecessary retries,
too long, and the long detection delay decreases performance severely. Similar to the
retransmission timer in TCP, a system may employ sophisticated approximation tech-
niques to try and estimate the best interval length. In a quickly varying network, like a
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vehicle moving in an urban environment, the capacity may return on much shorter time
scales than in a slowly evolving one, like a nomadic setup with weather as the only influ-
ence. However, such estimation algorithms rely on frequent events to provide the timing
measurements necessary to converge on an optimal value. A network environment that
is sufficiently stable, to be of any use at all, will typically not have enough adaptation
events to provide a useful and stable optimal retry interval to the average user.

5.3.5. Message loss
The analyses above only apply to a loss-free transmission of the signaling messages. In
case of a lossy environment, another delay comes into play: the retransmission timeout.
Setting the correct timeout is a wide area of research. Solutions exist from simple fixed
retransmission intervals to the complex RTO calculations implemented in TCP, which
take round-trip time and jitter into account. They all have, by necessity, one thing in
common: the retransmission timeout tR is always longer than the round-trip time of the
signaling process, significantly so in jittery environments. Therefore, whenever packet is
lost, tR dominates the overall convergence time.

The actual impact on the convergence time hugely depends on the loss ratio γ and
the desired success probability ρ. The number of required transmission attempts n for
a given loss rate and success probability can be calculated as

n=
¡

log(1−ρ)
log(2γ− γ2)

¤
The argument of the logarithm in the denominator is the combined loss probability of
two dependent packets. As a successful signaling transmission requires the transmission
of a request and a response, the probability for a signaling failure in any step increases
accordingly. In a lossy environment, ρ = 1 is impossible to achieve. The success rate
will asymptotically approach 100% for the number of retries n→∞.

Figure 5.16 visualizes the relation between the packet loss rate and the required trans-
mission attempts for some example success probabilities. The figure shows, that for a
reasonable probability of successfully transmitting a signaling request, the amount of
transmission attempts grows quickly with packet loss rate. To achieve a 99% probability
of successfully transmitting a request in a lossy environment with 10% packet loss, the
system already needs an average of 3 retransmission attempts. Typically, systems will
limit the number of retransmission attempts to a certain threshold. The vertical black
dashed lines show the tolerable packet loss rate for a maximum of three transmission
attempts. In order to achieve 99% probability of success, the initiator can only tolerate
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up to ∼ 11% loss rate in the network. Accepting an impractically low success proba-
bility of 50% would let the system work in very lossy environments with up to ∼ 55%
loss rateh. Even after the first message loss, the retransmission timeout becomes the
dominating factor in determining the overall convergence time. Further message losses
only deteriorate the performance further.
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Figure 5.16.: Average transmission attempts as a function of the packet loss rate.

This analysis assumes a uniformly distributed message loss with constant probability.
In a mobile network, with its link quality largely depending on the current environment,
this is not the case. Message losses tend to be correlated in time, increasing the likeli-
hood of the signaling exchange failing overall. End systems can try to circumvent this
correlation by using retransmission intervals which are longer than the average message
loss burst. This may further increase the overall convergence time of the process.

If a signaling exchange fails to transmit successfully, it may leave inconsistent state
behind. Some nodes might have been notified of a change, and allocated or released
resources, while others might not. In this case, another timeout becomes relevant: the

h“Work” here means: successfully completing a signaling exchange. Whether any practical application
protocol could cope with this kind of environment is debatable.

118



5. Evaluation

lifetime of a reservation. By necessity, the lifetime of an object is longer than the round-
trip time. This gives the data traffic, used as an implicit refresh, time to reach even the
furthest node after a path has been grantedi. Depending on the application, lifetimes will
typically be at least an order of magnitude above the RTT of the network. Therefore,
for a failed signaling transmission, the lifetime becomes the dominating factor when
determining the convergence time.

In conclusion: in a lossy environment, independent of the system used, the retransmis-
sion timeout quickly becomes the dominating factor of the convergence time. Depending
on the desired success probability, even a relatively low loss probability of 1% already
requires a retransmission, making the RTO dominant. The analyses in this section refer
to individual signaling exchanges. Every time a relation-unaware system needs addi-
tional messages, to reach the desired network configuration, message loss compounds
the performance degradation compared to to a relation-aware system.

5.4. Overall network capacity
The influence of the additional signaling overhead and delay times on the overall network
capacity is hard to estimate. It depends on parameters like the network overbooking,
stability, packet loss, transmission and resource acquisition times, as well as the applica-
tions communicating over the network (which in turn influence parameters like relation
size and structure, data transmission behavior and reservation parameters).

The determining factor of the network performance is the ratio between stability and
convergence time. The more stable a network is, i.e. the less frequent changes in the
request setup or capacity occur, the less influence the actual QoS system has. Even
a relation-unaware QoS system can achieve low wasted capacity over the long run in
a reasonably stable environment. The actual adaptation process may result in wasted
capacity at first, but a correcting initiator will eventually solve this issue. Relation-
unaware systems may take longer to converge, but with a sufficiently long network change
interval, this difference becomes negligible.

However, if the capacity varies more quickly, with intervals approaching the order of
magnitude of the signaling round-trip time, differences become more pronounced. De-
pending on the application and network setup, relation-unaware systems at least double
the convergence time for most events. For a given ratio m= tC/tR of the stable period tC
and the round-trip time tR, the relative performance of a relation-unaware compared to a

iThis implicitly assumes the same RTT for signaling and data traffic. Depending on the MAC and
PHY layer QoS, this is not necessarily the case. Different buffering strategies or modulation and
coding schemes can significantly increase the RTT for certain types of traffic.
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relation-aware system can never exceed m−1/2
m−1 . As figure 5.17 illustrates, the performance

of the relation-unaware system drastically declines for shorter stable periods. The curve
displayed in the figure is a maximum, assuming otherwise perfect operation. Including
message losses, retry mismatches and additional signaling to approximate more complex
relation structures, the real performance is likely to be significantly worse.
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Figure 5.17.: Relative performance of a relation-unaware system for a given ratio tC/tR.
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No academic work would be complete without some concluding remarks and an outlook
on future work. Section 6.1 gives a summary of the key findings of the work and tries
to interpret them according to the goals set in the beginning. The following section 6.2
presents new and open questions identified during the project and provides possible
directions for future research.

6.1. Conclusions
Path relations are a crucial factor of the performance of reservation-based QoS systems
in mobile satellite networks. In an environment where resources are comparatively scarce
and transmission delays long, they provide valuable information to enable networks to
quickly adapt to changes. Quickly adapt they must: effects like fading, shadowing and
interference change the link capacity rapidly in a mobile environment.

Existing QoS-solutions work on an individual flow level: each reservation is treated in-
dependently. However, this opens an information gap between network and application.
Transport protocols, such as TCP, or applications like video streaming or SIP form com-
plex path hierarchies with multiple interdependent reservations. Something as simple
as a TCP file download already requires two mutually dependent paths: a high-volume
downlink, transporting the actual file data, and a comparatively low-volume uplink, car-
rying acknowledgements. One without the other is useless, wasting resources that could
otherwise be better employed in the constrained environment.

This work proposes to model relations as propositional formulas representing invari-
ants over the reservation states in a router. By evaluating such an expression, a router
can assess whether the current (or a planned) resource allocation fulfills the application
requirements or not. Propositional formulas, with their ability to express any value pat-
tern the relation invariant might have, provide the necessary flexibility to integrate the
relation model with any kind of application protocol. Use cases like exclusive reserva-
tions for different quality levels of a video stream – impossible to model efficiently in
traditional systems – become a matter of simply defining the correct invariant.

Finding the best current resource allocation on a router is an instance of the well

121



6. Conclusions and future work

known Knapsack problem:

Maximize
∑
i∈I

visi

provided, that
∑
n∈N

wisi ≤Wn

and ∀r ∈ R : r = 1

The relation requirement ensures, that no feasible solution wastes any bandwidth. The
very definition of “wasted bandwidth” as allocated resources, that cannot be used, always
provides a feasible solution. If no resources are assigned, the solution is, by definition,
valid.

This resource allocation problem can be transformed into an Integer Linear Program,
giving access to a wide body of algorithm research for efficiently finding solutions. Using
an existing Branch-and-Cut solver, practically relevant problem sizes can be tackled by
the system.

The result is a QoS system, that does not waste resources and keeps more user sessions
online when adapting to degrading link conditions. Traditional systems can waste up
to 70% of the remaining capacity on a severely degraded link. This in turn leads to
between 20% and 50% fewer remaining user sessions when compared to a relation-aware
system after adaptation.

Making better decisions based on relation information enables the network to lower
signaling overhead and convergence time as well. Assuming the initiator corrects re-
lation violations in a traditional system, the amount of signaling (and therefore the
convergence time) at least doubles. Specific use cases like exclusive relations between
paths deteriorate performance even further. As existing systems are simply not designed
with these use cases in mind, they need complex approximation algorithms, involving
much additional signaling, to achieve the performance of a relation-aware solution.

Did this work fulfill the requirements set in section 1.2.2? The presented system
efficiently allocates resources to related paths, avoiding wasted resources which can oth-
erwise comprise up to 70% of the remaining link capacity. By making better decisions
based on the additional information, the relation-aware system avoids signaling necessary
for correcting allocation errors and is able to support use cases that are practically impos-
sible to efficiently realize in existing solutions. Together with a Suspend/Resume mech-
anism taken from the MoSaKa system, KASYMOSA QoS is able to adapt to variable
environments, as they are prevalent in mobile communications. Propositional formulas
as a way to express relation invariants do not limit the end user to specific preconceived
use cases, but allow applications to model any kind of static path relationship. Dy-
namic path relations are not supported, and are left to future research. The system is
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compatible with existing networks by bypassing non-QoS-capable routers. While this
possibly degrades the QoS-performance, it is a necessary capability in an environment
where global change of the infrastructure has basically become impossible. Future work
should look into the possibility of adapting KASYMOSA QoS to the NSIS protocol
framework. By basing the work on the foundations of an accepted standard, adoption
may be quicker and more seamless. Last, but not least, the underlying transport system
operates robustly in lossy environments without stalling independent signaling streams.

6.2. Future work
Even though KASYMOSA QoS manages to achieve its goals, the system is far from
being a perfect solution. As it is to be expected in any kind of research, new questions
arose along the way. This section briefly discusses those questions and tries to give
indications as to where solutions might be heading.

Efficient relation representation Currently, the system transmits relations through
the network by directly encoding their propositional formulas. This representation is
not necessarily very efficient for small, densely populated truth tables resulting from use
cases like TCP. More efficient solutions could transmit the function index of the truth
table (for small, densely populated use cases) or a list of valid table indexes (for larger,
more sparsely populated tables). How this influences the representation as an Integer
Linear Program remains an open question. As any truth table can be represented into
a Boolean expression (a subset of propositional formulas), the transformation to an ILP,
as presented in this work, is always possible. Whether the resulting ILP is sufficiently
efficient (in particular in the presence of the counting operators |d|1 and |d|0), remains
unclear.

Dynamic path relationships The relation model presented here only allows to model
static path relations. Relations that could change over time require some kind of tempo-
ral model not contained in this work. Future research needs to clarify what kind of use
cases benefit from a dynamic relation model and how such a model could flexibly, yet
efficiently, be represented.

More complex reservation models The KASYMOSA QoS reservation model is a sim-
ple Token Bucket Meter, combined with an equally simple priority system. Section 3.3.3
highlights some interactions between the reservation and relation models for such a re-
stricted case. Future research should answer the question how more complex models
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with in-built adaptation capabilities like the “QoS Desired” and “Minimum QoS” of
NSIS NSLP-QSPEC Template interact with relations and whether a combination is
feasible at all.

Adapting QoS to modern service-based infrastructures In the collaboration with
partners in the KASYMOSA project, it became apparent that the expressive capabilities
of a QoS system on the network layer are too limited to be used in a multi-layered
application. Even something as seemingly simple as creating the correct Filter object
becomes an issue when using a service architecture where the different components might
hold different information about the transfer in question. In such a system, the top-most
application layer might know about the rate requirements for its payload data, but not be
able to provide information about the actual transport layer: which protocols are used,
what connections will be opened etc. Architectures like SOAP leave these details to the
service layer underneath the applications, typically not exposing such information at all.
How QoS requirements can be integrated into such a system, including the necessary
adaptations at the lower layers, is an open question. Existing approaches like CQML
could provide the necessary tools to do so, and should be investigated further.

Integration of DiffServ-like systems Where IntServ (and therefore KASYMOSA QoS)
handle micro-flows, i.e. individual reservations for specific packet flows, systems like Diff-
Serv provide QoS by aggregating many flows into a Behavior Aggregate. The reasoning
behind the aggregation is a scalability problem, when applying IntServ to Internet-sized
networks. It remains to be seen how, and whether at all, a relation model could be
integrated with DiffServ, and how such a system would cope with relations within a
Behavior Aggregate or between different BAs.

Better integration with lower layers The KASYMOSA system already provides a cer-
tain degree of cross-layer integration between the physical, MAC and network layers. A
distributed resource allocation algorithm on the MAC layer uses aggregated information
from the network layer to request the correct amount of physical resources. However,
when adapting to a constrained environment, this algorithm does not take detailed in-
formation into account, resulting in a certain amount of “left-over” capacity, where no
network layer reservation fits. A more efficient system might try to minimize these su-
perfluous resources by transmitting, and taking into account, the resource levels useful
to the higher layers.
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Minimize/accelerate signaling based on relation information In the current system,
the adapting router is responsible for transmitting information about suspended paths
to all other nodes. In theory, as all nodes along a path have the same information about
relations, signaling the offending path and letting other nodes calculate dependencies
on their own, should suffice. Taking this idea a step further could mean relying on
globally available information on the satellite link (e.g. from the distributed allocation
algorithm on the MAC layer) to speed up signaling. Instead of having the signaling
cross the satellite link first, all attached terminals could use the available information to
calculate the expected outcome at the adapting node and start signaling right away on
both sides of the slow link. Research questions here include how much information needs
to be shared between the terminals, and how accuracy, and therefore, possibly required
corrections, behave with incomplete information.
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A. State Machines

Figure A.1 depicts the full state machine of a KASYMOSA QoS reservation. The picture
does not include lifetime or retransmission mechanisms, as these are handled separately.

One thing to note is the “Offline” state with its three sub-states “RemoteSuspend”,
“LocalSuspend” and “Blocked”. Whereas the two suspend states stem from the Sus-
pend/Resume mechanism, as already presented in MoSaKa, the Blocked-state is specific
to KASYMOSA QoS. Blocked reservations are reservations for which resources could
potentially be provided, but enabling them would violate a containing relation. They
behave differently from a locally suspended relation in that no resources are acquired
from lower layers. However, in contrast to remotely suspended relations, they are viable
candidates for the optimization process.

Another noteworthy detail is the missing transition between locally and remotely sus-
pended states. If such a transition were possible, a reservation could deadlock: if two
nodes suspended the reservation at the same time due to locally insufficient resources,
they would both, afterwards, receive the signaling by the other node, and enter the
RemoteSuspend state. As remotely suspended reservations are, for all intents and pur-
poses, non-existent to the resource allocation, none of the nodes would try to reacquire
resources for that path, perpetually keeping it suspended.

Figure A.2 depicts the external refresh cycle of a reservation. The state machine
controls and reacts to the two timers for Refresh and Deletion of a path. Both timers
are restarted by data being transmitted on the path, avoiding the need for explicit refresh
messages. A noticeable extension of the state machine is the “idle” state, in which both
timers are stopped. This state is entered whenever the corresponding path is suspended
for any reason. As suspension usually takes place in an already constrained environment
and should stop the initiator from transmitting data along the path. By requiring
refreshes for suspended reservations, the system would risk deleting these paths due to
their timers running out. To avoid submitting explicit refresh messages for suspended
paths and thus using already limited resources, the refresh mechanism is disabled in this
environment. This does introduce the issue of paths being perpetually suspended if the
node, that initially triggered the suspension, disappears. However, the problem could be
solved by topology change detection or external timer mechanisms without introducing
additional signaling.
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Figure A.1.: Reservation state machine
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B. A complex transformation example

For this transformation example, the following reservation and relation setup is assumed:

• Path p0(rate: 10000 bit/s,prio: 2)

• Path p1(rate: 5000 bit/s,prio: 2)

• Path p2(rate: 3000 bit/s,prio: 1)

• Path p3(rate: 1000 bit/s,prio: 1)

Paths p0 and p1 form a mutually dependent pair (e.g. the video and audio connection
of a streaming solution), as do p2 and p3. The two pairs are mutually exclusive (e.g.
they might represent alternative versions of different quality of the same stream).

The resulting relation has the value 1 for s = (s3, s2, s1, s0) = (0,0, 0,0), (0,0, 1,1) and
(1,1,0, 0), resulting in the propositional formula:

r = (|s|0 = 4)∨ s3 s2s1s0 ∨ s3s2s1 s0

Transforming this setup yields the following ILP:
Notes

Maximize 2 · s0 + 2 · s1 + 1 · s3 + 1 · s3
provided, that 10000 · s0 + 5000 · s1+ assumes identity

between net rate and
physical resources

3000 · s2 + 1000 · s3 ≤ cmax

(1− s3) + (1− s2)+ |s|0
(1− s1) + (1− s0) = y0
0≤ (1− s3)+(1− s2)+ s1+ s0−4 · y1 ≤ 3 s3 s2s1s0

0≤ s3+ s2+(1− s1)+(1− s0)−4 · y2 ≤ 3 s3s2s1 s0

0≤ y0 + y1 + y2 − 3 · r ≤ 2 the complete r
1≤ r ensure r ̸= 0

Using these constraints an ILP solver will find the optimal resource allocation for the
current capacity limit cmax (the example implicitly assumes only one serving interface,
hence only one capacity limit). As the null-solution is included in the ILP as y0, there
will always be a feasible solution, even if no paths can be served at all.
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Codepoint, 27
domain, 27
Interior Nodes, 27

Expedited Forwarding (EF), 27

filter spec, 32
Flow descriptor, 32
flowspec, 32

General Internet Signaling Transport, 35
GIST, 35
Guaranteed Service, 24
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Raw data and Source code

An electronic version of this thesis, all raw data used in the evaluation chapter and the
relevant source code can be accessed at https://www.geekbetrieb.de/thesis/.
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